KU

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

Additional Topics - Dummy Variables, Adjusted R-Squared & Heteroskedasticity

Caio Vigo

The University of Kansas

Department of Economics

Spring 2020

These slides were based on Introductory Econometrics by Jeffrey M. Wooldridge (2015)

KU Topics

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

1 Multiple Regression Analysis with Qualitative Information

2 A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

3 Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

- \bullet We have been studying variables (dependent and independent) with $\ensuremath{\textbf{quantitative}}$ meaning.
- Now we need to study how to incorporate **qualitative** information in our framework (Multiple Regression Analysis).
- How do we describe binary qualitative information? Examples:
 - A person is either male or female. binary or dummy variable
 - A worker belongs to a union or does not. binary or dummy variable
 - A firm offers a 401(k) pension plan or it does not. binary or dummy variable
 - the race of an individual. multiple categories variable
 - the region where a firm is located (N, S, W, E). multiple categories variable

- Multiple Regression Analysis with Qualitative Information
- A Single Dummy Independent Variable
- Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories
- Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared
- Heteroskedasticity & Robust Inference

- We will discuss only binary variables.
- **Binary variable** (or **dummy variable**) are also called a **zero-one** variable to emphasize the two values it takes on.
- Therefore, we must decide which outcome is assigned zero, which is one.
- Good practice: to choose the variable name to be descriptive.
- For example, to indicate gender, *female*, which is one if the person is female, zero if the person is male, is a better name than *gender* or *sex* (unclear what gender = 1 corresponds to).

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Consider the following dataset:

head(wage1_dummy)

##	wage	lwage	educ	exper	tenure	female	married
## 1	3.10	1.131402	11	2	0	1	0
## 2	3.24	1.175573	12	22	2	1	1
## 3	3.00	1.098612	11	2	0	0	0
## 4	6.00	1.791759	8	44	28	0	1
## 5	5.30	1.667707	12	7	2	0	1
## E	8.75	2.169054	16	9	8	0	1

tail(wage1_dummy)

##		wage	lwage	educ	exper	tenure	female	married
##	521	5.65	1.7316556	12	2	0	0	0
##	522	15.00	2.7080503	16	14	2	1	1
##	523	2.27	0.8197798	10	2	0	1	0
##	524	4.67	1.5411590	15	13	18	0	1
##	525	11.56	2.4475510	16	5	1	0	1
##	526	3.50	1.2527629	14	5	4	1	0

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

- \bullet For distinguishing different categories, any two different values would work. **Example:** $5 \mbox{ or } 6$
- $\bullet \ 0$ and 1 make the interpretation in regression analysis much easier.

KU Topics

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference Multiple Regression Analysis with Qualitative Information

2 A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

3 Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • What would it mean to specify a simple regression model where the explanatory variable is binary? Consider

$$wage = \beta_0 + \delta_0 female + u$$

where we assume SLR.4 holds:

E(u|female) = 0

• Therefore,

 $E(wage|female) = \beta_0 + \delta_0 female$

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • There are only two values of *female*, 0 and 1.

$$E(wage|female = 0) = \beta_0 + \delta_0 \cdot 0 = \beta_0$$

$$E(wage|female = 1) = \beta_0 + \delta_0 \cdot 1 = \beta_0 + \delta_0$$

In other words, the average wage for men is β_0 and the average wage for women is $\beta_0+\delta_0.$

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

• We can write

$$\delta_0 = E(wage|female = 1) - E(wage|female = 0)$$

as the difference in average wage between women and men.

• So δ_0 is not really a slope.

It is just a difference in average outcomes between the two groups.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • The population relationship is mimicked in the simple regression estimates.

$$\begin{array}{rcl} \hat{\beta}_{0} & = & \overline{wage}_{m} \\ \hat{\beta}_{0} + \hat{\delta}_{0} & = & \overline{wage}_{f} \\ \hat{\delta}_{0} & = & \overline{wage}_{f} - \overline{wage}_{m} \end{array}$$

where \overline{wage}_m is the average wage for men in the sample and \overline{wage}_f is the average wage for women in the sample.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

##	Total Obs	erva	tions i	n Table:	526			
##								
##								
##		1		0	1			
##								
##			27	4	252			
##			0.52	1 0	.479			
##								
sta	argazer(wa	ge1_	dummy,	type='tex	t')			
##								
##	Statistic	Ν	Mean	St. Dev.	Min	Pct1(25)	Pct1(75)	Max
## ##	Statistic	N 	Mean	St. Dev.	Min 	Pct1(25)	Pct1(75)	Max
## ## ##	Statistic 	N 526	Mean 5.896	St. Dev. 3.693	Min 0.530	Pct1(25) 3.330	Pct1(75) 6.880	Max 24.980
## ## ## ##	Statistic wage lwage	N 526 526	Mean 5.896 1.623	St. Dev. 3.693 0.532	Min 0.530 -0.635	Pct1(25) 3.330 1.203	Pct1(75) 6.880 1.929	Max 24.980 3.218
## ## ## ## ##	Statistic 	N 526 526 526	Mean 5.896 1.623 12.563	St. Dev. 3.693 0.532 2.769	Min 0.530 -0.635 0	Pct1(25) 3.330 1.203 12	Pct1(75) 6.880 1.929 14	Max 24.980 3.218 18
## ## ## ## ##	Statistic wage lwage educ exper	N 526 526 526 526 526	Mean 5.896 1.623 12.563 17.017	St. Dev. 3.693 0.532 2.769 13.572	Min 0.530 -0.635 0 1	Pct1(25) 3.330 1.203 12 5	Pct1(75) 6.880 1.929 14 26	Max 24.980 3.218 18 51
## ## ## ## ## ##	Statistic wage lwage educ exper tenure	N 526 526 526 526 526 526	Mean 5.896 1.623 12.563 17.017 5.105	St. Dev. 3.693 0.532 2.769 13.572 7.224	Min 0.530 -0.635 0 1 0	Pct1(25) 3.330 1.203 12 5 0	Pct1(75) 6.880 1.929 14 26 7	Max 24.980 3.218 18 51 44
## ## ## ## ## ##	Statistic wage lwage educ exper tenure female	N 526 526 526 526 526 526 526	Mean 5.896 1.623 12.563 17.017 5.105 0.479	St. Dev. 3.693 0.532 2.769 13.572 7.224 0.500	Min 0.530 -0.635 0 1 0 0	Pct1(25) 3.330 1.203 12 5 0 0	Pct1(75) 6.880 1.929 14 26 7 1	Max 24.980 3.218 18 51 44 1
## ## ## ## ## ## ##	Statistic 	N 526 526 526 526 526 526 526 526	Mean 5.896 1.623 12.563 17.017 5.105 0.479 0.608	St. Dev. 3.693 0.532 2.769 13.572 7.224 0.500 0.489	Min 0.530 -0.635 0 1 0 0 0 0	Pct1(25) 3.330 1.203 12 5 0 0 0 0	Pct1(75) 6.880 1.929 14 26 7 1 1	Max 24.980 3.218 18 51 44 1 1

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

	Dependent variable:
	wage
female	-2.512*** (0.303)
Constant	7.099*** (0.210)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	526 0.116 0.114 3.476 (df = 524) 68.537*** (df = 1; 524)
Note:	*p<0.1; **p<0.05; ***p<0.01

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

- The estimated difference is very large. Women earn about \$2.51 less than men per hour, on average.
- Of course, there are some women who earn more than some men; this is a difference in averages.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • This simple regression allows us to do a simple **comparison of means test**. The null is

$$H_0: \mu_f = \mu_m$$

where μ_f is the population average wage for women and μ_m is the population average wage for men.

• Under MLR.1 to MLR.5, we can use the usual t statistic as approximately valid (or exactly under MLR.6):

$$t_{female} = -8.28$$

which is a very strong rejection of H_0 .

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasti & Robust Inference

- The estimate $\hat{\delta}_0 = -2.51$ does not control for factors that should affect wage, such as workforce experience and schooling.
- If women have, on average, less education, that could explain the difference in average wages.
- If we just control for education, the model written in expected value form is

 $E(wage|female, educ) = \beta_0 + \delta_0 female + \beta_1 educ$

where now δ_0 measures the gender difference when we hold fixed *exper*.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

• Another way to write δ_0 :

$$\delta_0 = E(wage|female, educ) - E(wage|male, educ)$$

where $educer_0$ is any level of experience that is the same for the woman and man.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

	Dependent variable:
	wage
female	-2.273***
	(0.279)
educ	0.506***
	(0.050)
Constant	0.623
	(0.673)
Observations	526
R2	0.259
Adjusted R2	0.256
Residual Std. Error	3.186 (df = 523)
F Statistic	91.315*** (df = 2; 523)
Note:	*p<0.1; **p<0.05; ***p<0.01

- Multiple Regression Analysis with Qualitative Information
- A Single Dummy Independent Variable
- Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories
- Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared
- Heteroskedasticity & Robust Inference

- Notice that there is still a difference of about \$2.27 (now it's smaller, but still large and statistically significant).
- \bullet The model imposes a common slope on educ for men and women, β_1 , estimated to be .506 in this example.
- Recall, that the **intercept** is the only number that differ both categories (men and women).
- The estimated difference in average wages is the same at all levels of experience: \$2.27.

Multiple Regression Analysis wit Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference Figure: Graph of $wage = \beta_0 + \delta_0 female + \beta_1 educ$ for $\delta_0 < 0$

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

	•	Notice	that	we	can	add	other	variables
--	---	--------	------	----	-----	-----	-------	-----------

	Dependent variable:
	wage
female	-2.156***
	(0.270)
educ	0.603***
	(0.051)
exper	0.064***
	(0.010)
Constant	-1.734**
	(0.754)
Observations	526
R2	0.309
Adjusted R2	0.305
Residual Std. Error	3.078 (df = 522)
F Statistic	77.920*** (df = 3; 522)
Note:	*p<0.1; **p<0.05; ***p<0.01

• Note that if we also control for *exper*, the gap declines to \$2.16 (still large and statistically significant).

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • The previous regressions use males as the **base group** (or **benchmark group** or **reference group**). The coefficient -2.16 on *female* tells us how women do compared with men.

- Of course, we get the same answer if we women as the base group, which means using a dummy variable for males rather than females.
- Because male = 1 female, the coefficient on the dummy changes sign but must remain the same magnitude.
- The intercept changes because now the base (or reference) group is females.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Putting *female* and *male* both in the equation is redundant. We have two groups so need only two intercepts.

• This is the simplest example of the so-called **dummy variable trap**, which results from putting in too many dummy variables to represent the given number of groups (two in this case).

• Because an intercept is estimated for the base group, we need only one dummy variable that distinguishes the two groups.

KU Interpreting Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Consider the following regression:

$$log(y) = \beta_0 + \beta_1 x_{dummy} + \beta_2 x_2 + u$$

• When log(y) is the dependent variable in a model, the coefficient on a dummy variable, when multiplied by 100, is interpreted as the percentage difference in y, holding all other factors fixed.

$\ensuremath{\mathrm{K\!U}}$ Interpreting Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • When the coefficient on a dummy variable suggests a large proportionate change in y, the exact percentage difference can be obtained exactly as with the semi-elasticity calculation.

Recall,

Model	Dependent Variable	Independent Variable	Interpretation of eta_1
Level-Level	y	x	$\Delta y = \beta_1 \Delta x$
Level-Log	y	$\log(x)$	$\Delta y = (\beta_1/100)\%\Delta x$
Log-Level	$\log(y)$	x	$\%\Delta y = (100\beta_1)\Delta x$
Log-Log	$\log(y)$	$\log(x)$	$\%\Delta y = \beta_1\%\Delta x$

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

	Dependent variable:
	lwage
female	-0.397***
	(0.043)
Constant	1.814***
	(0.030)
Observations	526
R2	0.140
Adjusted R2	0.138
Residual Std. Error	$0.494 \ (df = 524)$
F Statistic	85.044*** (df = 1; 524)
Note:	*p<0.1; **p<0.05; ***p<0.01

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

$$\widehat{wage} = 1.814 - .397 female$$

(.030) (.043)
 $n = 526, R^2 = .138$

• A rough estimate is that in the population of working, high school graduates, the average wage for women is below that of men by 39.7%.

KU Interpreting Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables : Multiple Categorie:

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Thus, for the following regression:

$$log(y) = \beta_0 + \beta_1 x_{dummy} + \beta_2 x_2 + u$$

for the dummy variable x_{dummy} , the exact percentage difference in the predicted y when $x_{dummy} = 1$ versus when $x_{dummy} = 0$ is:

$$100 \cdot [exp(\hat{\beta}_1) - 1]$$

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

	Dependent variable:
	lwage
female	-0.397***
	(0.043)
Constant	1.814***
	(0.030)
Observations	526
R2	0.140
Adjusted R2	0.138
Residual Std. Error	$0.494 \ (df = 524)$
F Statistic	85.044*** (df = 1; 524)
Note:	*p<0.1; **p<0.05; ***p<0.01

\mathbf{K} Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is $\log(y)$

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

Exact Percentage Difference

Using,

• Men as the base (reference) group:,

precise estimate in wage difference: $\exp(-.397)-1\approx-.328,$ or 32.8% lower for women.

• Women as the base (reference) group:,

precise estimate in wage difference: $\exp(.397)-1\approx-.487,$ or 48.7% higher for men.

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable

Dummy Variables f Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

lvage female -0.361*** (0.039) educ educ 0.077*** (0.007) Constant Observations 526 R2 0.300 Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52) Note: *pc0.1; **pc0.05; ***pc		Dependent variable:
female -0.361*** (0.339) educ 0.077*** (0.007) Constant 0.826*** (0.094) 		lwage
(0.039) educ 0.077*** (0.007) Constant 0.826*** (0.094) 	female	-0.361***
educ 0.077*** (0.007) Constant 0.826*** (0.094) 		(0.039)
(0.007) Constant 0.826*** (0.094) 	educ	0.077***
Constant 0.826*** (0.094) 		(0.007)
(0.094) Dbservations 526 R2 0.300 Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52 Toto: *p<0.1; **p<0.05; ***p<	Constant	0.826***
Observations 526 R2 0.300 Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52 moto: *p<0.1; **p<0.05; ***p		(0.094)
Observations 526 R2 0.300 Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52 Toto: *p<0.1; **p<0.05; ***p		
R2 0.300 Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189**** (df = 2; 55 	Observations	526
Adjusted R2 0.298 Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52 	R2	0.300
Residual Std. Error 0.445 (df = 523) F Statistic 112.189*** (df = 2; 52 Note: *p<0.1; **p<0.05; ***p<	Adjusted R2	0.298
F Statistic 112.189*** (df = 2; 52 Note: *p<0.1; **p<0.05; ***p<	Residual Std. Error	0.445 (df = 523)
Note: *p<0.1; **p<0.05; ****p<	F Statistic	112.189*** (df = 2; 523)
Note: *p<0.1; **p<0.05; ***p<		
	Note:	*p<0.1; **p<0.05; ***p<0.01

	Dependent variable:
	lwage
female	-0.344***
Iomato	(0.038)
educ	0.091***
	(0.007)
exper	0.009***
	(0.001)
Constant	0.481***
	(0.105)
Observations	526
R2	0.353
Adjusted R2	0.349
Residual Std. Error	0.429 (df = 522)
F Statistic	94.747*** (df = 3; 522)
Note:	*p<0.1; **p<0.05; ***p<0.01

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables for

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • The gap shrinks, but is still substantial.

• If we control for workforce experience and education, the difference is approximately 34.4% lower for women. The precise estimate in wage difference: $\exp(-.344) - 1 \approx -.291$, or 29.1% lower for women.

• That is, at any given levels of experience and education, a woman is predicted to earn about 29% less than a man.

- Multiple Regression Analysis with Qualitative Information
- A Single Dummy Independent Variable
- Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories
- Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared
- Heteroskedasticity & Robust Inference

- Suppose in the wage example we have two qualitative variables, gender and marital status. Call these *female* and *married*.
- We can define four exhaustive and mutually exclusive groups. These are married males (marrmale), married females (marrfem), single males (singmale), and single females (singfem).
- \bullet Note that we can define each of these dummy variables in terms of female and married:

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Varial

Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

- We can allow each of the four groups to have a different intercept by choosing a base group and then including dummies for the other three groups.
 - So, if we choose single males as the base group, we include marrmale, marrfem, and singfem in the regression. The coefficients on these variabels are relative to single men.
 - \bullet With lwage as the dependent variable, we can give them a percentage change interpretation.

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is $\log(y)$

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with log(y) as the Dependent Variab

Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

	Dependent variable:
	lwage
marrmale	0.292***
	(0.055)
marrfem	-0.120**
	(0.058)
singfem	-0.097*
	(0.057)
educ	0.084***
	(0.007)
exper	0.003*
	(0.002)
tenure	0.016***
	(0.003)
Constant	0.388***
	(0.102)
Observations	526
R2	0.424
Adjusted R2	0.417
Residual Std. Error	0.406 (df = 519)
F Statistic	63.626*** (df = 6; 519)
Note:	*p<0.1; **p<0.05; ***p<0.01

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variab

Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Using the usual approximation based on differences in logarithms – and holding fixed education, experience, and tenure – a married man is estimated to earn about 29.2% more than a single man.

• Remember, this compares two men with the same level of schooling, general workforce experience, and tenure with the current employer.

KU Interpreting Coefficients on Dummy Explanatory Variables when the Dependent Variable is log(y)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with log(y) as the Dependent Varial

Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • What if we want to compare married women and single women? Just plug in the correct set of zeros and ones.

intercept for married women = .388 - .120intercept for single women = .388 - .097difference = -0.268 - (-0.291) = -.023

so married women earn about 2.3% less than single women (controlling for other factors).

- We cannot tell from the previous output whether this difference is statistically significant.
- Note how the intercept for single men gets differenced away.

KU Topics

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

Multiple Regression Analysis with Qualitative Information

② A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

③ Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference Recall that,

- How do we decide whether to include a single new independent variable: t test.
- How do we decide whether to include a group of new variables: F test.

Adjusted R-Squared

Motivation: R^2 can never go down (usually increases) when one or more variables is added to a regression.

- We use the **adjusted R-squared** to compare across models that have different numbers of explanatory variables but where one is not a special case of the other (nonnested models).
- The **adjusted R-squared** imposes a penalty for adding additional explanatory variables.

${\displaystyle K\!U}$ Adjusted R-Squared

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • As usual, start with

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

• Now we need to be more careful with variance labels:

$$\sigma_y^2 = Var(y)$$

 $\sigma_u^2 = Var(u)$

 $\rho^2 = 1 - \frac{\sigma_u^2}{\sigma_u^2}$

Define

This is the **population**
$$R$$
-squared – the amount of population variation in y explained by $x_1, ..., x_k$.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference \bullet The formula for the R^2 can be written as

$$R^{2} = 1 - \frac{SSR}{SST} = 1 - \frac{(SSR/n)}{(SST/n)},$$

which shows we can think of R^2 as using SSR/n to estimate σ_u^2 and SST/n to estimate σ_y^2 . These are consistent but not unbiased estimators. • Instead, use

$$\frac{SSR}{(n-k-1)}$$
$$\frac{SST}{(n-1)}$$

as the unbiased estimators.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference • Plugging in gives the **adjusted** *R***-squared**, also called "*R*-bar-squared":

$$\begin{split} \bar{R}^2 &= 1 - \frac{[SSR/(n-k-1)]}{[SST/(n-1)]} \\ &= 1 - \frac{\hat{\sigma}^2}{[SST/(n-1)]} \end{split}$$

where $\hat{\sigma}^2$ is the usual variance parameter estimator.

- \bar{R}^2 imposes a penalty: When more regressors are added, SSR falls, but so does df = n k 1. \bar{R}^2 can increase or decrease.
- For $k \ge 1$, $\bar{R}^2 < R^2$ unless SSR = 0 (not an interesting case).
- It is possible that $\bar{R}^2 < 0$, especially if df is small. Remember that $R^2 \ge 0$ always.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedasticity & Robust Inference

Algebraic Facts:

1. If a single variable is added to a regression, \overline{R}^2 increases if and only if the absolute t statistic of the new variable is greater than one.

2. If two or more variables are added to a regression, \bar{R}^2 increases if and only if the F statistic for joint significance of the new variables is greater than one.

• Important: In the *R*-squared form of the *F* statistic that we covered, it is the usual *R*-squared, not the adjusted *R*-squared, that appears.

• Sometimes \bar{R}^2 is called the "corrected *R*-squared".

KU Topics

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

Multiple Regression Analysis with Qualitative Information

② A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

3 Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Gelection of Regressors: :he Adjusted R-Squared

Heteroskedastic & Robust Inference • Recall the five Gauss-Markov Assumptions for OLS regression:

Gauss-Markov Assumptions

MLR.1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$

MLR.2: random sampling from the population

MLR.3: no perfect collinearity in the sample

MLR.4: $E(u|x_1,...,x_k) = E(u) = 0$ (exogenous explanatory variables)

MLR.5: $Var(u|x_1,...,x_k) = Var(u) = \sigma^2$ (homoskedasticity)

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

- Under these five assumptions, OLS has lots of nice properties.
 - OLS is BLUE.
 - OLS is (asymptotically) efficient

Consequences of adding/removing assumption MLR.6

- With normality (MLR.6), the tests and confidence intervals are exact given any sample size.
- Without normality **(MLR.6)**, the usual OLS test statistics and CIs are only asymptotically justified ⇒ you need to have a large sample to use them.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

Consequences of adding/removing assumption MLR.5

- If we do not impose or assume homoskedastic errors, i.e., if we drop **MLR.5** and act as if we know nothing about $Var(u|x_1,...,x_k) = ?$
- Since, **heteroskedasticity** does not cause bias in the $\hat{\beta}_j$, OLS is still unbiased under **MLR.1** to **MLR.4**.
- OLS is no longer **BLUE**.
- It is possible to find **unbiased estimators** that have smaller variances than the OLS estimators.
- Important: standard errors are no longer valid.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independen Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

- This means the *t* statistics and confidence intervals that use these standard errors cannot be trusted.
- This is true even in large samples.
- \bullet Joint hypotheses tests using the usual F statistic are no longer valid in the presence of heteroskedasticity.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference • Standard errors and all test statistics can be modified to be valid in the presence of **heteroskedasticity of unknown form**.

Heteroskedasticity-Robust Standard Errors

- We need to compute heteroskedasticity-robust standard errors.
 - Which produces **heteroskedasticity-robust** *t* **statistics** and **heteroskedasticity-robust confidence intervals**.
 - The **heteroskedasticity-robust** test statistics and CIs only have asymptotic justification, even if the full set of CLM assumptions hold.
 - With smaller sample sizes, the **heteroskedasticity-robust** statistics need not be well behaved.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables for Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

Example:

- The robust statistics are virtually always different from the usual statistics, regardless of which set of assumptions holds in the population.
- In this example: The robust standard errors (between square brackets) are all slightly larger than the usual standard errors.
- In this example: Cls are slightly wider, t statistics slightly lower.

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fr Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

Tests of Heteroskedasticity:

Assuming MLR.1 to MLR.4 holds:

- Breusch-Pagan test for heteroskedasticity
- White test for heteroskedasticity

Multiple Regression Analysis with Qualitative Information

A Single Dummy Independent Variable

Dummy Variable Coefficients with $\log(y)$ as the Dependent Variable Dummy Variables fo Multiple Categories

Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared

Heteroskedastic & Robust Inference

Steps in Computing the Breusch-Pagan (and White) Test

1. Estimate the equation $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + u$ by OLS, saving the OLS residuals, \hat{u}_i .

2. Compute the squared residuals, \hat{u}_i^2 .

3. Regress \hat{u}_i^2 on all explanatory variables (for White: ... on all explanatory variables and also the nonredundant squares and interactions of all explanatory variables) and compute the usual F test of joint significance of the explanatory variables.

4. If the *p*-value of the test is sufficiently small, reject the null of homoskedasticity and conclude that the homoskedasticity assumption (MLR.5) fails.