

# The University of Kansas

## Department of Economics

Final Econ 526 - Introduction to Econometrics

m July/25/2019 Instructor: Caio Vigo Pereira

Name:

#### SECTION A - MULTIPLE CHOICE

4%

- 1. Let X, Y and Z be three random variables. Knowing that Corr(X, Y) = 1 and Corr(X, Z) = -1, if X falls, what can you tell about the direction of the change of Y and Z?
  - A. Y will raise and Z will raise
  - B. Y will raise and Z will drop
  - C. Y will drop and Z will raise
  - D. Y will drop and Z will drop

4%

- 2. Consider a multiple linear regression model such as:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$ . Under the Gauss-Markov assumptions, what is the distribution of the error term u?
  - A.  $u \sim N(0, 1)$
  - B.  $u \sim N(0, \sigma^2)$
  - C.  $u \sim t_{df}$ , where df = n k 1
  - D. Gauss-Markov assumptions don't restrict the distribution of the error term u

4%

- 3. Consider any multiple linear regression. It is known that under the Gauss-Markov assumptions, the OLS estimators are BLUE. What "B" refers to?
  - A. That the OLS estimators have the smallest variance among the unbiased estimators
  - B. That  $E(\hat{\beta}_i^{OLS}) = \beta_i$  for any  $\beta_0, \beta_1, \beta_2, \dots, \beta_k$
  - C. That the OLS estimators have the smallest variance among all possible estimators
  - D. That the OLS estimators are consistent

4%

4. Assume that the Classical Linear Model (CLM) assumptions hold. What is the distribution of  $\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)}$ ?

based on Quiz 7, A-6

- $\overline{A}$ .  $t_{df}$ , where df = n k 1
- B.  $F_{(q,n-k-1)}$
- C.  $N(0, k^2)$
- D. None of the above

4%

- 5. The \_\_\_\_\_\_ is used to compare across models that have different numbers of explanatory variables but where one is **not** a special case of the other (i.e., **nonnested models**).
  - A.  $R^2$
  - B. t test
  - C. Adjusted  $R^2$
  - D. F test

| 2.5% | 6. | EXTRA POINTS Among the statements below, which one is <b>NOT</b> under the <i>Classical Linear Model</i> assumptions?                                                                                                                               |
|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |    | A. the error term $u$ is normally distributed                                                                                                                                                                                                       |
|      |    | B. the error term $u$ is independent of the explanatory variables                                                                                                                                                                                   |
|      |    | C. the error term $u$ has mean $0$                                                                                                                                                                                                                  |
|      |    | D. the variance of the error term $u$ is a function of the explanatory variables                                                                                                                                                                    |
| 2.5% | 7. | EXTRA POINTS Which of the following can cause the usual OLS $t$ statistics to be invalid (that is, not to have $t$ distributions under the null hypothesis)?  A. Heteroskedasticity B. Multicollinearity C. Homoskedasticity D. Exogenous variables |
|      |    | SECTION B - TRUE OR FALSE                                                                                                                                                                                                                           |
|      |    |                                                                                                                                                                                                                                                     |
| 3%   | 1. | We say that an estimator is unbiased if it has the smallest variance among all other estimators. based on Quiz 2, B-4  O True O False                                                                                                               |
|      |    |                                                                                                                                                                                                                                                     |
| 3%   | 2. | Let $Y_1, Y_2, \ldots, Y_n$ be i.i.d. random variables with mean $\mu$ , and variance $\sigma^2$ . Consider the following estimator:                                                                                                                |
| 070  |    | $W = (Y_1 + \frac{Y_2}{2} + \frac{Y_n}{2})/2$ . Then, W is a <b>biased</b> estimator of $\mu$ .                                                                                                                                                     |
|      |    | $\bigcirc \text{ True } \bigcirc \text{ False}$                                                                                                                                                                                                     |
|      |    |                                                                                                                                                                                                                                                     |
| 3%   | 3. | Let $Y_1, Y_2, \ldots, Y_n$ be i.i.d. random variables with mean $\mu$ . The Law of Large Numbers (LLN) states that $\bar{Y}$ is a                                                                                                                  |
|      |    | consistent estimator of $\mu$ .                                                                                                                                                                                                                     |
|      |    | ○ True ○ False                                                                                                                                                                                                                                      |
|      |    |                                                                                                                                                                                                                                                     |
| 3%   | 4. | The following regression model: $log(y) = \beta_0 + \beta_1 log(x_1) + u$ is also known as constant elasticity model. based on Quiz 4, B-4                                                                                                          |
|      |    | ○ True ○ False                                                                                                                                                                                                                                      |
| 3%   | 5  | Consider the following models:                                                                                                                                                                                                                      |
| 070  | ٠. |                                                                                                                                                                                                                                                     |
|      |    | Model 1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$                                                                                                                                                                                              |
|      |    | Model 2: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$                                                                                                                                                                                |
|      |    | Then, $SSR_{model1} \ge SSR_{model2}$ and $SST_{model1} = SST_{model2}$ . based on Quiz 5, B-3                                                                                                                                                      |
|      |    | ↑ True ↑ False                                                                                                                                                                                                                                      |
|      |    |                                                                                                                                                                                                                                                     |
| 3%   | 6  | Evaconous avalanatory variables is not a necessary assumption in order to the OLS estimator to be unbissed                                                                                                                                          |
| 370  | υ. | Exogenous explanatory variables is not a necessary assumption in order to the OLS estimator to be unbiased, however the assumption $E(u x_1,,x_k)=0$ is necessary.                                                                                  |
|      |    | $\bigcirc$ True $\bigcirc$ False                                                                                                                                                                                                                    |
|      |    |                                                                                                                                                                                                                                                     |

3%

| 3% | 7. Multicollinearity violates the Gauss-Markov assumptions, and therefore the OLS estimators are | not BLUE. |
|----|--------------------------------------------------------------------------------------------------|-----------|
|    |                                                                                                  |           |

3% 8. Given the t statistic, the p-value provides the largest significance level in order to reject the null hypothesis.

○ True ○ False

9. Consider any multiple linear regression. Knowing that you can reject  $H_0$  for a specific parameter at 1% significance level, then you should be able to reject the  $H_0$  at 2% significance level, but not necessarily at 0.1% significance level.

[based on Quiz 7, B-3]

○ True ○ False

3% 10. Consider the following multiple linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

Assume that the 95% confidence interval for  $\beta_1$  is [-0.254, 1.723].

Therefore,  $\hat{\beta}_1$  is statistically different from 0 at 5% significance level.

○ True ○ False

4%

4%

#### SECTION C - SHORT ANSWER

Consider a data set containing a random sample with salary information and career statistics for 269 players in the National Basketball Association (NBA). The dataset consists of the following variables (variable's name and description):

annual salary, thousands \$ wage exper years as professional player age age in years coll years played in college games average games per year minutes minutes per season guard =1 if guard forward =1 if forward center =1 if center points points per game rebounds rebounds per game assists per game assists draft draft number allstar =1 if ever all star  ${\tt avgmin}$ minutes per game

1. (This question refers to Regression (A)) Consider the following regression (R output) [Notice that the significance level "stars" - \*, \*\*, \*\*\* - were suppressed in this output]:

#### REGRESSION (A)

|                     | Dependent variable:   |
|---------------------|-----------------------|
|                     | log(wage)             |
|                     | 0.1289                |
| exper               |                       |
|                     | (0.0354)              |
| age                 | -0.0585               |
|                     | (0.0350)              |
| coll                | -0.0556               |
| COII                | (0.0519)              |
|                     | (0.0519)              |
| allstar             | -0.0038               |
|                     | (0.1376)              |
| avgmin              | 0.0507                |
| 0                   | (0.0046)              |
|                     | <b>,</b> ,            |
| Constant            | 6.8871                |
|                     | (0.8442)              |
|                     |                       |
| Observations        | 269                   |
| R2                  | 0.4913                |
| Adjusted R2         | 0.4816                |
| Residual Std. Error | 0.6346  (df = 263)    |
| F Statistic         | 50.7930 (df = 5; 263) |
|                     |                       |

- (a) State the null hypothesis that the number of years played in college has no *ceteris paribus* effect on a NBA's player salary (two-sided). State the alternative hypothesis that there is an effect? [Two lines answer]
- (b) Test the hypothesis stated above at the 1% significance level. Find the critical value. [Two lines answer]

2%

4%

4%

4%

| 4% | (c) Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level |  |
|----|-------------------------------------------------------------------------------------------------------------------|--|
|    | [Two lines answer]                                                                                                |  |

2% (d) Would you include coll in a final model explaining NBA players salary in terms of years played in college? Why? Explain. [One line answer]

4% (e) Find the 99% confidence interval for  $\beta_{exper}$ . [One line answer]

4% (f) Is the variable *exper* statistically significant at 1% significance level? [One line answer]

2. (This question refers to **Regression (B)**) Consider the following (additional) regression:

#### REGRESSION (B)

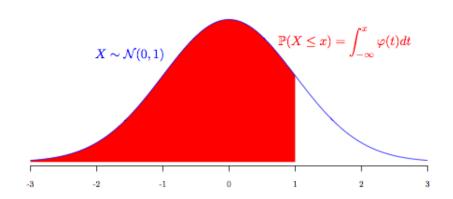
|                                                                         | Dependent variable:                                                      | =                                                                                                                                            |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | log(wage)                                                                | -                                                                                                                                            |
| exper                                                                   | 0.1257***<br>(0.0352)                                                    | -                                                                                                                                            |
| age                                                                     | -0.0552<br>(0.0348)                                                      | Coefficients:                                                                                                                                |
| coll                                                                    | -0.0370<br>(0.0518)                                                      | Estimate Std. Error t value Pr(> t ) (Intercept) 6.8158193 0.8360829 8.152 1.5e-14 *** exper 0.1256580 0.0351871 3.571 0.000423 ***          |
| allstar                                                                 | -0.2132<br>(0.1565)                                                      | age -0.0552317 0.0347665 -1.589 0.113350 coll -0.0369725 0.0518374 -0.713 0.476335                                                           |
| avgmin                                                                  | 0.0299***<br>(0.0094)                                                    | allstar -0.2131675 0.1565311 -1.362 0.174428<br>avgmin 0.0299440 0.0093665 3.197 0.001560 **<br>points 0.0449557 0.0163604 2.748 0.006417 ** |
| points                                                                  | 0.0450***<br>(0.0164)                                                    | games -0.0001336 0.0025255 -0.053 0.957843                                                                                                   |
| games                                                                   | -0.0001<br>(0.0025)                                                      | Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                                                                                |
| Constant                                                                | 6.8158***<br>(0.8361)                                                    |                                                                                                                                              |
| Observations<br>R2<br>Adjusted R2<br>Residual Std. Error<br>F Statistic | 269<br>0.5056<br>0.4923<br>0.6280 (df = 261)<br>38.1252*** (df = 7; 261) | -                                                                                                                                            |
| Note:                                                                   | *p<0.1; **p<0.05; ***p<0.0                                               | =<br>1                                                                                                                                       |

(a) Which variables are statistically significant at 1% significance level. List their names.

[Hint: No computation required.] [One line answer]

- (b) Using the data from both regressions, state the null and alternative hypothesis that *points* and *games* are **jointly** statistically significant. Write down the unrestricted and the restricted model. [Four lines answer]
- (c) Test the hypothesis stated above at the 1% significance level. Find the critical value. Test the same hypothesis again at the 5% significance level. Find the critical value. [Four lines answer]
- (d) Do you reject the null hypothesis? Explain the statistical significance of your test at 1% and 5% significance levels. [Hint: Don't forget to use a specific word when explaining the statistical significance.] [Four lines answer]

3. (This question refers to **Regression (C)**). Answer the questions below knowing that in this data set we classify a basketball player in one of the following three categories: guard, forward and center.


#### REGRESSION (C)

|                     | Dependent variable:         |
|---------------------|-----------------------------|
|                     | wage                        |
| exper               | 224.4807***                 |
|                     | (48.2237)                   |
| age                 | -110.9587**                 |
|                     | (48.3493)                   |
| forward             | 108.5672                    |
|                     | (112.4999)                  |
| Constant            | 3,269.9330***               |
|                     | (1,096.8610)                |
|                     |                             |
| Observations        | 269                         |
| R2                  | 0.1862                      |
| Adjusted R2         | 0.1770                      |
| Residual Std. Error | 906.9850 (df = 265)         |
| F Statistic         | 20.2135*** (df = 3; 265)    |
|                     |                             |
| Note:               | *p<0.1; **p<0.05; ***p<0.01 |

- 4%
- (a) State the null and alternative hypothesis of the F statistic for overall significance of a regression. Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level. [Three lines answer]
- 3%
- (b) What is the estimated average difference in salary between being a forward or not, for players with the same exper and age? [Hint: Use the correct measure unit] [One line answer]
- 2%
- (c) All other factors being equal, is there any statistical evidence that being a *forward* player impacts the annual salary of a NBA player? Consider three different significance levels: 1%, 5% and 10% (significance level) in your answer.

  [Three lines answer]
- 4. [Gauss-Markov Theorem] Under which assumptions does the Gauss-Markov Theorem holds? State and briefly explain each one of them. [One line answer per assumption]

### Standard Normal Distribution



|     | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
|     |        |        |        |        |        |        |        |        |        |        |

Critical Values of the t-distribution

|           |          |       | S     | ignificance Leve | el     |        |
|-----------|----------|-------|-------|------------------|--------|--------|
| 1-Tailed: |          | .10   | .05   | .025             | .01    | .005   |
| 2-Tailed: |          | .20   | .10   | .05              | .02    | .01    |
|           | 1        | 3.078 | 6.314 | 12.706           | 31.821 | 63.657 |
|           | 2        | 1.886 | 2.920 | 4.303            | 6.965  | 9.925  |
|           | 3        | 1.638 | 2.353 | 3.182            | 4.541  | 5.841  |
|           | 4        | 1.533 | 2.132 | 2.776            | 3.747  | 4.604  |
|           | 5        | 1.476 | 2.015 | 2.571            | 3.365  | 4.032  |
|           | 6        | 1.440 | 1.943 | 2.447            | 3.143  | 3.707  |
|           | 7        | 1.415 | 1.895 | 2.365            | 2.998  | 3.499  |
|           | 8        | 1.397 | 1.860 | 2.306            | 2.896  | 3.355  |
|           | 9        | 1.383 | 1.833 | 2.262            | 2.821  | 3.250  |
|           | 10       | 1.372 | 1.812 | 2.228            | 2.764  | 3.169  |
| Ъ         | 11       | 1.363 | 1.796 | 2.201            | 2.718  | 3.106  |
| D<br>e    | 12       | 1.356 | 1.782 | 2.179            | 2.681  | 3.055  |
| g         | 13       | 1.350 | 1.771 | 2.160            | 2.650  | 3.012  |
| r         | 14       | 1.345 | 1.761 | 2.145            | 2.624  | 2.977  |
| e         | 15       | 1.341 | 1.753 | 2.131            | 2.602  | 2.947  |
| e<br>s    | 16       | 1.337 | 1.746 | 2.120            | 2.583  | 2.921  |
|           | 17       | 1.333 | 1.740 | 2.110            | 2.567  | 2.898  |
| o<br>f    | 18       | 1.330 | 1.734 | 2.101            | 2.552  | 2.878  |
| '         | 19       | 1.328 | 1.729 | 2.093            | 2.539  | 2.861  |
| F         | 20       | 1.325 | 1.725 | 2.086            | 2.528  | 2.845  |
| r         | 21       | 1.323 | 1.721 | 2.080            | 2.518  | 2.831  |
| e<br>e    | 22       | 1.321 | 1.717 | 2.074            | 2.508  | 2.819  |
| d         | 23       | 1.319 | 1.714 | 2.069            | 2.500  | 2.807  |
| 0         | 24       | 1.318 | 1.711 | 2.064            | 2.492  | 2.797  |
| m         | 25       | 1.316 | 1.708 | 2.060            | 2.485  | 2.787  |
|           | 26       | 1.315 | 1.706 | 2.056            | 2.479  | 2.779  |
|           | 27       | 1.314 | 1.703 | 2.052            | 2.473  | 2.771  |
|           | 28       | 1.313 | 1.701 | 2.048            | 2.467  | 2.763  |
|           | 29       | 1.311 | 1.699 | 2.045            | 2.462  | 2.756  |
|           | 30       | 1.310 | 1.697 | 2.042            | 2.457  | 2.750  |
|           | 40       | 1.303 | 1.684 | 2.021            | 2.423  | 2.704  |
|           | 60       | 1.296 | 1.671 | 2.000            | 2.390  | 2.660  |
|           | 90       | 1.291 | 1.662 | 1.987            | 2.368  | 2.632  |
|           | 120      | 1.289 | 1.658 | 1.980            | 2.358  | 2.617  |
|           | $\infty$ | 1.282 | 1.645 | 1.960            | 2.326  | 2.576  |

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

1% Critical Values of the F Distribution

|        | Numerator Degrees of Freedom |       |      |      |      |      |      |      |      |      |      |  |
|--------|------------------------------|-------|------|------|------|------|------|------|------|------|------|--|
|        |                              | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |  |
|        | 10                           | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 |  |
| D      | 11                           | 9.65  | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 | 4.54 |  |
| е      | 12                           | 9.33  | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 |  |
| n<br>o | 13                           | 9.07  | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 |  |
| m      | 14                           | 8.86  | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 |  |
| i      | 15                           | 8.68  | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 |  |
| n      | 16                           | 8.53  | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 |  |
| a<br>t | 17                           | 8.40  | 6.11 | 5.18 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 |  |
| 0      | 18                           | 8.29  | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 | 3.60 | 3.51 |  |
| r      | 19                           | 8.18  | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 | 3.43 |  |
| _      | 20                           | 8.10  | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 |  |
| D<br>e | 21                           | 8.02  | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 | 3.31 |  |
| g      | 22                           | 7.95  | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 | 3.26 |  |
| r      | 23                           | 7.88  | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 | 3.21 |  |
| е      | 24                           | 7.82  | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 |  |
| e<br>s | 25                           | 7.77  | 5.57 | 4.68 | 4.18 | 3.85 | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 |  |
| 3      | 26                           | 7.72  | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 | 3.18 | 3.09 |  |
| 0      | 27                           | 7.68  | 5.49 | 4.60 | 4.11 | 3.78 | 3.56 | 3.39 | 3.26 | 3.15 | 3.06 |  |
| f      | 28                           | 7.64  | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 | 3.12 | 3.03 |  |
| F      | 29                           | 7.60  | 5.42 | 4.54 | 4.04 | 3.73 | 3.50 | 3.33 | 3.20 | 3.09 | 3.00 |  |
| r      | 30                           | 7.56  | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 |  |
| е      | 40                           | 7.31  | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 |  |
| е      | 60                           | 7.08  | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 |  |
| d<br>o | 90                           | 6.93  | 4.85 | 4.01 | 3.54 | 3.23 | 3.01 | 2.84 | 2.72 | 2.61 | 2.52 |  |
| m      | 120                          | 6.85  | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 |  |
|        | $\infty$                     | 6.63  | 4.61 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 |  |

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

5% Critical Values of the F Distribution

|        | Numerator Degrees of Freedom |      |      |      |      |      |      |      |      |      |      |
|--------|------------------------------|------|------|------|------|------|------|------|------|------|------|
|        |                              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| D      | 10                           | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 |
| e      | 11                           | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 |
| n      | 12                           | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 |
| 0      | 13                           | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 |
| m      | 14                           | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 |
| İ      | 15                           | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 |
| n<br>a | 16                           | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 |
| t      | 17                           | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 |
| 0      | 18                           | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 |
| r      | 19                           | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 |
| _      | 20                           | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 |
| D<br>e | 21                           | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 |
| g      | 22                           | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 |
| r      | 23                           | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 |
| е      | 24                           | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 |
| е      | 25                           | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 |
| S      | 26                           | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 |
| 0      | 27                           | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 |
| f      | 28                           | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 |
|        | 29                           | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 |
| F      | 30                           | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 |
| r      | 40                           | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 |
| е      | 60                           | 4.00 | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 |
| e<br>d | 90                           | 3.95 | 3.10 | 2.71 | 2.47 | 2.32 | 2.20 | 2.11 | 2.04 | 1.99 | 1.94 |
| 0      | 120                          | 3.92 | 3.07 | 2.68 | 2.45 | 2.29 | 2.17 | 2.09 | 2.02 | 1.96 | 1.91 |
| m      | $\infty$                     | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 |

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.