

The University of Kansas

Department of Economics

Quiz 7
Econ 526 - Introduction to Econometrics

m May/01/2019 Instructor: Caio Vigo Pereira

Name:

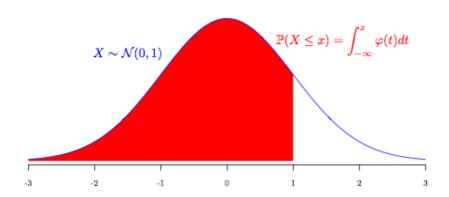
[Same dataset from Quiz 4 & 5] Consider a random sample with the Grade Point Average (GPA) and standardized test scores (ACT), along with the performance in an introductory economics course, for students at a large public university. The variable to be explained is *score*, which is the final score in the course measured as a percentage. The econometric model is:

$$log(score) = \beta_0 + \beta_1 hsgpa + \beta_2 log(actmth) + \beta_3 colgpa + u$$

where hsgpa is the high school GPA, log(actmth) is the natural logarithm of the ACT in math and colgpa is the college GPA of the student prior to take the economics course. The R output is:

Regression (A)

	Dependent variable:					
	log(score)					
hsgpa	0.0274 (0.0204)					
		Coefficient				
log(actmth)	0.3082			Std. Error		
	(0.0388)	(Intercept)				< 2e-16
		0.		0.02037		?
colgpa	0.1784	log(actmth)			_	6.7e-15
	(0.0125)	colgpa 	0.17840	0.01250	ŗ	< 2e-16
Constant	2.7073					
	(0.1119)					
Observations	814					
R2	0.3704					
Adjusted R2	0.3681					
Residual Std. Error 0.1662 (df = 810)						
F Statistic	158.8443 (df = 3; 810)					


SECTION A - MULTIPLE CHOICE

12%

- 1. Consider the **Regression** (A). Suppose you want to test whether $\beta_1 > 0$ (one-sided). What is $t_{\hat{\beta}_1}$ equal to?
 - A. 0.7445
 - B. 24.1939
 - C. 1.3431
 - D. 0.0413

12%	2.	Consider the Regression (A) again. Suppose you want to test whether $\beta_1 = 0$ (two-sided). Evaluate the statements below and determine which one is correct. A. We can reject H_0 at 5% significance level, but not at 1% significance level. B. We can reject H_0 at 10% significance level, but not at 5% significance level. C. We can reject H_0 at 1% significance level, but not at 0.1% significance level. D. We cannot reject H_0 at any significance level less than or equal to 10%.
12%	3.	Consider the Regression (A) again. Suppose you want to test whether β_3 is statistically significant. Evaluate the statements below and determine which one is correct. A. $\hat{\beta}_3$ is statistically significant at 1% significance level. B. $\hat{\beta}_3$ is NOT statistically significant at 1% significance level. C. $\hat{\beta}_3$ is NOT statistically significant at 5% significance level. D. $\hat{\beta}_3$ is NOT statistically significant at 10% significance level.
12%	4.	Consider the Regression (A) again. Suppose you want to test whether β_2 is statistically significant. Evaluate the statements below and determine which one is correct. A. $\hat{\beta}_2$ is statistically significant at 0.1% significance level. B. $\hat{\beta}_2$ is statistically significant at 1% significance level. C. $\hat{\beta}_2$ is statistically significant at 5% significance level. D. All the above.
12%	5.	Consider the Regression (A) again. Suppose you want to test whether the elasticity of <i>score</i> with respect <i>actmth</i> is unitary, i.e., equal to 1 or not. Evaluate the statements below and determine which one is correct. A. We can NOT reject the null hypothesis at 2% significance level. B. the t statistic provides no (or little) evidence against the null hypothesis at small significance levels ($< 1\%$). C. the t statistic provides evidence against the null hypothesis at small significance levels ($< 1\%$). D. $\hat{\beta}_2$ is NOT statistically different from 1 at 5% significance level.
12%	6.	Assume that the Classical Linear Model (CLM) assumptions hold. As can be seen in the regression output, $\hat{\beta}_3 = 0.178$ and $se(\hat{\beta}_3) = 0.0125$. What is the distribution of $\frac{0.178 - \beta_3}{0.0125}$? A. t_{df} , where $df = 3$ B. $F_{(3,810)}$ C. $N(0,0.0125^2)$ D. t_{df} , where $df = 810$
		SECTION B - TRUE OR FALSE
10%	1.	The 95% confidence interval for β_1 is approximately [-0.013, 0.067]. \bigcirc True \bigcirc False
9%	2.	Consider any multiple linear regression. Knowing that you can reject H_0 for a specific parameter at 1% significance level, then you should be able to reject the H_0 at 2% significance level. \bigcirc True \bigcirc False
9%	3.	Consider any multiple linear regression. Knowing that you can reject H_0 for a specific parameter at 1% significance level, then you should be able to reject the H_0 at 0.1% significance level. \bigcirc True \bigcirc False

Standard Normal Distribution

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

t-distribution

			S	Significance Lev	el	
I-Tailed:		.10	.05	.025	.01	.005
?-Tailed:		.20	.10	.05	.02	.01
	1	3.078	6.314	12.706	31.821	63.657
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
	8	1.397	1.860	2.306	2.896	3.355
	9	1.383	1.833	2.262	2.821	3.250
	10	1.372	1.812	2.228	2.764	3.169
_	11	1.363	1.796	2.201	2.718	3.106
D	12	1.356	1.782	2.179	2.681	3.055
e g	13	1.350	1.771	2.160	2.650	3.012
r	14	1.345	1.761	2.145	2.624	2.977
е	15	1.341	1.753	2.131	2.602	2.947
e s	16	1.337	1.746	2.120	2.583	2.921
	17	1.333	1.740	2.110	2.567	2.898
0	18	1.330	1.734	2.101	2.552	2.878
f	19	1.328	1.729	2.093	2.539	2.861
F	20	1.325	1.725	2.086	2.528	2.845
r	21	1.323	1.721	2.080	2.518	2.831
e e	22	1.321	1.717	2.074	2.508	2.819
d	23	1.319	1.714	2.069	2.500	2.807
0	24	1.318	1.711	2.064	2.492	2.797
m	25	1.316	1.708	2.060	2.485	2.787
	26	1.315	1.706	2.056	2.479	2.779
	27	1.314	1.703	2.052	2.473	2.771
	28	1.313	1.701	2.048	2.467	2.763
	29	1.311	1.699	2.045	2.462	2.756
	30	1.310	1.697	2.042	2.457	2.750
	40	1.303	1.684	2.021	2.423	2.704
	60	1.296	1.671	2.000	2.390	2.660
	90	1.291	1.662	1.987	2.368	2.632
	120	1.289	1.658	1.980	2.358	2.617
	∞	1.282	1.645	1.960	2.326	2.576

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.