

Department of Economics

Quiz 5 Econ 526 - Introduction to Econometrics

Apr/03/2019 Instructor: Caio Vigo Pereira

Name:

SECTION A - MULTIPLE CHOICE

[Same dataset from Quiz 4] Consider a random sample with the Grade Point Average (GPA) and standardized test scores (ACT), along with the performance in an introductory economics course, for students at a large public university. The variable to be explained is *score*, which is the final score in the course measured as a percentage. The variable *hsgpa* is the high school GPA, *actmth* is the ACT in math and *colgpa* is the college GPA of the student prior to take the economics course.

	Dependent variable:
	log(score)
hsgpa	0.0274
	(0.0204)
log(actmth)	0.3082***
	(0.0388)
colgpa	0.1784***
	(0.0125)
Constant	2.7073***
	(0.1119)
Observations	814
R2	0.3704
Adjusted R2	0.3681
Residual Std. Error	0.1662 (df = 810)
F Statistic	158.8443*** (df = 3; 810)
Note:	*p<0.1; **p<0.05; ***p<0.01

12.5%

1. Based on the above, what is the effect on the dependent variable if colgpa increases one unit?

- A. log(score) will increase 17.8%
- B. log(score) will increase 1.78%
- C. \widehat{score} will increase by 0.178 units
- D. \widehat{score} will increase 17.8%

12.5% 2. Based on the above, what is the effect on the dependent variable if *actmth* increases 10%?

- A. log(score) will increase 3.08%
- B. $\widehat{log(score)}$ will increase 30.8%
- C. \widehat{score} will increase by 0.308 units
- D. \widehat{score} will increase 3.08%

12.5% 3. In order to find the OLS estimators for the true parameters β_0 , β_1 , β_2 and β_3 for the regression above, how many First Order Conditions do we have?

- A. 2
- B. 3
- C. 4
- D. 5

12.5% 4. Assume that hsgpa and log(actmth) are uncorrelated with u, but colgpa is correlated with u. Then:

- A. We say that *colgpa* is an endogenous explanatory variable, therefore $E(u|x_1, x_2, x_3, x_4) = 0$.
- B. We say that *colgpa* is an endogenous explanatory variable, therefore $E(u|x_1, x_2, x_3, x_4) \neq 0$.
- C. We say that *colgpa* is an exogenous explanatory variable, therefore $E(u|x_1, x_2, x_3, x_4) = 0$.
- D. We say that *colgpa* is an exogenous explanatory variable, therefore $E(u|x_1, x_2, x_3, x_4) \neq 0$.

SECTION B - TRUE OR FALSE

Consider a random sample with 1005 observations of house purchases in Kansas. Your dataset consists of the following variables (variable's name and variable description):

house_price	price paid in thousands of dollars
number_bedrs	number of bedrooms
number_fullbaths	number of full bathrooms
number_halfbaths	number of half bathrooms
number_baths	<pre>= number_fullbaths + number_halfbaths</pre>
crime_rate	crime rate in the neighborhood
lot_size	lot size in square feet

12.5% 1. Consider the following regression model:

 $log(house_price) = \beta_0 + \beta_1 log(lot_size) + log(\beta_2)crime_rate + u$

where log() represents the natural logarithm. Then this model is linear in parameters. \bigcirc True \bigcirc False

12.5% 2. Consider the following regression model:

 $house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_1 + \beta_2 number_baths + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_2 + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_2 + \beta_4 number_halfbaths + u_3 + \beta_4 +$

Then this model suffers from perfect collinearity. \bigcirc True \bigcirc False

12.5% 3. Consider the following models:

 $\label{eq:model-model-bedrs} \mbox{Model 1:} \quad house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + u$

 $\label{eq:model2} \text{Model 2:} \quad house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + \beta_3 crime_rate + u$

Then, $R^2_{model1} > R^2_{model2}$. \bigcirc True \bigcirc False

12.5% 4. Consider the following regression model:

 $house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + u$

Knowing that $Corr(number_bedrs, number_baths) = 0.98$, then the OLS estimator is a biased estimator for the true parameters. \bigcirc True \bigcirc False