

Department of Economics

Quiz 4 Econ 526 - Introduction to Econometrics

Mar/25/2019 Instructor: Caio Vigo Pereira

Name:

SECTION A - MULTIPLE CHOICE

Consider a random sample with the Grade Point Average (GPA) and standardized test scores (ACT), along with the performance in an introductory economics course, for students at a large public university. The variable to be explained is *score*, which is the final score in the course measured as a percentage. The variable *hsgpa* is the high school GPA, *actmth* is the ACT in math and *colgpa* is the college GPA of the student prior to take the economics course.

REGRESSION (A)

	Dependent variable:
	log(score)
hsgpa	0.2120***
	(0.0199)
Constant	3.5563***
	(0.0668)
Observations	856
R2	0.1174
Adjusted R2	0.1163
Residual Std. Error	0.1997 (df = 854)
F Statistic	113.5666*** (df = 1; 854)
Note:	*p<0.1; **p<0.05; ***p<0.01

12.5% 1. Based on the **Regression** (A) above, what is the effect on the dependent variable if hsgpa increases one unit?

- A. log(score) will increase 21.2%
- B. log(score) will increase 0.212%
- C. \widehat{score} will increase by 0.212 units
- D. \widehat{score} will increase 21.2%

REGRES	SION (I	B)
	Dependent	variabl

	Dependent variable:
	log(score)
log(actmth)	0.5084*** (0.0406)
Constant	2.6735*** (0.1274)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	814 0.1616 0.1606 0.1915 (df = 812) 156.4957*** (df = 1; 812)
Note:	*p<0.1; **p<0.05; ***p<0.01

12.5% 2. Based on the **Regression (B)** above, what is the effect on the dependent variable if *actmth* increases 10%?

- A. log(score) will increase 0.5084%
- B. $\widehat{log(score)}$ will increase 50.84%
- C. \widehat{score} will increase by 5.084 units
- D. \widehat{score} will increase 5.084%

REGRESSION (C)

	Dependent variable:
	score
colgpa	14.3155*** (0.6997)
Constant	32.3061*** (2.0049)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	856 0.3289 0.3281 10.9842 (df = 854) 418.5822*** (df = 1; 854)
Note:	*p<0.1; **p<0.05; ***p<0.01

12.5% 3. Based on the **Regression (C)** above, what is the effect on the dependent variable if *colgpa* decreases 2 units? A. *score* will decrease by 28.631 units

- B. \widehat{score} will decrease 14.316%
- C. \widehat{score} will decrease 28.631%
- D. \widehat{score} will decrease by 7.158 units

- 4. The variable *colgpa* is a number from 0 to 4. Consider the case that you would like to transform the college GPA to a scale from 0 to 100. Thus, you create a new variable: *colgpa_scaled*, such that *colgpa_scaled* = $25 \cdot colpga$. Then you rerun the **Regression (C)** replacing *colgpa* by *colgpa_scaled*. What is your new $\hat{\beta}_1$?
 - A. $25 \cdot 14.3155$
 - B. $\frac{1}{25} \cdot 14.3155$
 - C. $\frac{100}{25} \cdot 14.3155$
 - D. $0.25 \cdot 14.3155$

SECTION B - TRUE OR FALSE

For all models below, assume that you have a random sample, and that (i) $Var(x) \neq 0$ and (ii) E(u|x) = 0 for any independent variable x.

- 10% 1. Consider the following regression model: $log(score) = \beta_0 + \beta_1 colgpa^3 + u$. Then this model is linear in parameters. \bigcirc True \bigcirc False
- 10% 2. Consider the following regression model: $log(score) = \beta_0 + \beta_1 log(colgpa) + u$. Then the OLS is an unbiased estimator for the true β_0 and β_1 . \bigcirc True \bigcirc False
- 10% 3. The following regression model: $log(score) = \beta_0 + \beta_1 log(hsgpa) + u$ is also known as constant percentage model. \bigcirc True \bigcirc False
- 10% 4. The following regression model: $log(score) = \beta_0 + \beta_1 colgpa + u$ is also known as constant elasticity model. \bigcirc True \bigcirc False

10% 5. In the following regression model: $log(score) = \beta_0 + \beta_1 log(colgpa) + u$, β_1 is the elasticity of *score* with respect to *hsgpa*. \bigcirc True \bigcirc False