The University of Kansas

Department of Economics

Econ 526 - Introduction to Econometrics

Name:

SECTION A - MULTIPLE CHOICE

Consider a random sample with the Grade Point Average (GPA) and standardized test scores (ACT), along with the performance in an introductory economics course, for students at a large public university. The variable to be explained is score, which is the final score in the course measured as a percentage. The variable hsgpa is the high school GPA, actmth is the ACT in math and colgpa is the college GPA of the student prior to take the economics course.

REGRESSION (A)

	Dependent variable:
	\log (score)
hsgpa	$\begin{aligned} & 0.2120 * * * \\ & (0.0199) \end{aligned}$
Constant	$\begin{aligned} & 3.5563 * * * \\ & (0.0668) \end{aligned}$
Observations	856
R2	0.1174
Adjusted R2	0.1163
Residual Std. Error	0.1997 ($\mathrm{df}=854$)
F Statistic	113.5666*** ($\mathrm{df}=1$; 854)
Note:	*p<0.1; **p<0.05; ***p<0.01

1. Based on the Regression (A) above, what is the effect on the dependent variable if hsgpa increases one unit?
A. $\log \widehat{(s c o r e})$ will increase 21.2%
B. $\log (\widehat{\text { score })}$ will increase 0.212%
C. $\widetilde{\text { score }}$ will increase by 0.212 units
D. $\widehat{\text { score }}$ will increase 21.2%

REGRESSION (B)

Dependent variable:	
	\log (score)
$\log ($ actmth $)$	$\begin{aligned} & 0.5084 * * * \\ & (0.0406) \end{aligned}$
Constant	$\begin{aligned} & 2.6735 * * * \\ & (0.1274) \end{aligned}$
Observations	814
R2	0.1616
Adjusted R2	0.1606
Residual Std. Error	0.1915 ($\mathrm{df}=812$)
F Statistic	$156.4957 * * * ~(d f=1 ; ~ 812) ~$
Note:	$* \mathrm{p}<0.1 ; * * \mathrm{p}<0.05 ; * * * \mathrm{p}<0.01$

2. Based on the Regression (B) above, what is the effect on the dependent variable if actmth increases 10% ?
A. $\log \widehat{(\operatorname{scor} e)}$ will increase 0.5084%
B. $\log \widehat{(s c o r e)}$ will increase 50.84%
C. $\widehat{\text { score }}$ will increase by 5.084 units
D. $\widehat{s c o r e}$ will increase 5.084%

REGRESSION (C)

	Dependent variable:
	score
colgpa	$\begin{gathered} 14.3155 * * * \\ (0.6997) \end{gathered}$
Constant	$\begin{gathered} 32.3061 * * * \\ (2.0049) \end{gathered}$
Observations	856
R2	0.3289
Adjusted R2	0.3281
Residual Std. Error	$10.9842(\mathrm{df}=854)$
F Statistic	418.5822*** ($\mathrm{df}=1$; 854)
Note:	*p<0.1; **p<0.05; ***p<0.01

3. Based on the Regression (C) above, what is the effect on the dependent variable if colgpa decreases 2 units?
A. $\widehat{\text { score }}$ will decrease by 28.631 units
B. $\widehat{\text { score }}$ will decrease 14.316%
C. $\widehat{\text { score }}$ will decrease 28.631%
D. $\widehat{\text { score }}$ will decrease by 7.158 units
4. The variable colgpa is a number from 0 to 4 . Consider the case that you would like to transform the college GPA to a scale from 0 to 100 . Thus, you create a new variable: colgpa_scaled, such that colgpa_scaled $=25 \cdot$ colpga. Then you rerun the Regression (C) replacing colgpa by colgpa_scaled. What is your new $\hat{\beta}_{1}$?
A. $25 \cdot 14.3155$
B. $\frac{1}{25} \cdot 14.3155$
C. $\frac{100}{25} \cdot 14.3155$
D. $0.25 \cdot 14.3155$

SECTION B - TRUE OR FALSE

For all models below, assume that you have a random sample, and that (i) $\operatorname{Var}(x) \neq 0$ and (ii) $E(u \mid x)=0$ for any independent variable x.

1. Consider the following regression model: $\log ($ score $)=\beta_{0}+\beta_{1} \operatorname{colgpa}{ }^{3}+u$. Then this model is linear in parameters. \bigcirc True \bigcirc False
2. Consider the following regression model: $\log (\operatorname{score})=\beta_{0}+\beta_{1} \log (\operatorname{colgpa})+u$. Then the OLS is an unbiased estimator for the true β_{0} and β_{1}.True \bigcirc False
3. The following regression model: $\log ($ score $)=\beta_{0}+\beta_{1} \log (h s g p a)+u$ is also known as constant percentage model.TrueFalse
4. The following regression model: $\log (\operatorname{score})=\beta_{0}+\beta_{1} \operatorname{colgpa}+u$ is also known as constant elasticity model.TrueFalse
5. In the following regression model: $\log ($ score $)=\beta_{0}+\beta_{1} \log (\operatorname{colgpa})+u, \beta_{1}$ is the elasticity of score with respect to hsgpa.TrueFalse
