

Describing Qualitative Information

A Single Dummy Independent Variable

Additional Topics

Caio Vigo

The University of Kansas

Department of Economics

Fall 2018

These slides were based on Introductory Econometrics by Jeffrey M. Wooldridge (2015)

Describing Qualitative Information

A Single Dummy Independent Variable

Multiple Regression Analysis with Qualitative Information (chapter 7) Describing Qualitative Information

U Describing Qualitative Information

• We have been studying variables (dependent and independent) with **quantitative** meaning.

• Now we need to study how to incorporate **qualitative** information in our framework (Multiple Regression Analysis).

- How to we describe binary qualitative information? Examples:
 - A person is either male or female. binary or dummy variable
 - A worker belongs to a union or does not. binary or dummy variable
 - A firm offers a 401(k) pension plan or it does not. binary or dummy variable
 - the race of an individual. multiple categories variable
 - the region where a firm is located (N, S, W, E). multiple categories variable

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

KU Describing Qualitative Information

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

- We will discuss only binary variables.
- **Binary variable** (or **dummy variable**) are also called a **zero-one** variable to emphasize the two values it takes on.
- Therefore, we must decide which outcome is assigned zero, which is one.
- Good practice: to choose the variable name to be descriptive.
- For example, to indicate gender, *female*, which is one if the person is female, zero if the person is male, is a better name than *gender* or *sex* (unclear what gender = 1 corresponds to).

KU

Describing Qualitative Information

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable

• Consider the following dataset:

head(wage1_dummy)

##		wage	lwage	educ	exper	tenure	female	married
##	1	3.10	1.131402	11	2	0	1	0
##	2	3.24	1.175573	12	22	2	1	1
##	3	3.00	1.098612	11	2	0	0	0
##	4	6.00	1.791759	8	44	28	0	1
##	5	5.30	1.667707	12	7	2	0	1
##	6	8.75	2.169054	16	9	8	0	1

tail(wage1_dummy)

##		wage	lwage	educ	exper	tenure	female	married
##	521	5.65	1.7316556	12	2	0	0	0
##	522	15.00	2.7080503	16	14	2	1	1
##	523	2.27	0.8197798	10	2	0	1	0
##	524	4.67	1.5411590	15	13	18	0	1
##	525	11.56	2.4475510	16	5	1	0	1
##	526	3.50	1.2527629	14	5	4	1	0

V Describing Qualitative Information

- Multiple Regression Analysis with Qualitative Information (chapter 7)
- Describing Qualitative Information
- A Single Dummy Independent Variable
- \bullet For distinguishing different categories, any two different values would work. **Example:** 5 or 6
- $\bullet \ 0$ and 1 make the interpretation in regression analysis much easier.

KU Topics

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable Multiple Regression Analysis with Qualitative Information (chapter 7) Describing Qualitative Information

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable • What would it mean to specify a simple regression model where the explanatory variable is binary? Consider

$$wage = \beta_0 + \delta_0 female + u$$

where we assume SLR.4 holds:

E(u|female) = 0

• Therefore,

 $E(wage|female) = \beta_0 + \delta_0 female$

Describing Qualitative Information

A Single Dummy Independent Variable • There are only two values of *female*, 0 and 1.

$$E(wage|female = 0) = \beta_0 + \delta_0 \cdot 0 = \beta_0$$

$$E(wage|female = 1) = \beta_0 + \delta_0 \cdot 1 = \beta_0 + \delta_0$$

In other words, the average wage for men is β_0 and the average wage for women is $\beta_0+\delta_0.$

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable

• We can write

$$\delta_0 = E(wage|female = 1) - E(wage|female = 0)$$

as the difference in average wage between women and men.

• So δ_0 is not really a slope.

It is just a difference in average outcomes between the two groups.

Describing Qualitative Information

A Single Dummy Independent Variable • The population relationship is mimicked in the simple regression estimates.

$$\begin{array}{rcl} \hat{\beta}_{0} & = & \overline{wage}_{m} \\ \hat{\beta}_{0} + \hat{\delta}_{0} & = & \overline{wage}_{f} \\ \hat{\delta}_{0} & = & \overline{wage}_{f} - \overline{wage}_{m} \end{array}$$

where \overline{wage}_m is the average wage for men in the sample and \overline{wage}_f is the average wage for women in the sample.

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

## ## ##	Total Obs	erva	tions i	n Table:	526			
##		I		0	1			
##								
##			27	4	252			
##			0.52	1 0	.479			
##								
sta	argazer(wa	ge1_	dummy,	type='tex	t')			
##								
##	Statistic	Ν	Mean	St. Dev.	Min	Pct1(25)	Pct1(75)	Max
##								
##	wage	526	5.896	3.693	0.530	3.330	6.880	24.980
##	lwage	526	1.623	0.532	-0.635	1.203	1.929	3.218
##	educ	526	12.563	2.769	0	12	14	18
##	exper	526	17.017	13.572	1	5	26	51
##	tenure	526	5.105	7.224	0	0	7	44
						0		
##	female	526	0.479	0.500	0	0	1	1
	female married				0	0	1 1	1

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

	Dependent variable:
	wage
female	-2.512***
	(0.303)
Constant	7.099***
	(0.210)
Observations	526
R2	0.116
Adjusted R2	0.114
Residual Std. Error	3.476 (df = 524)
F Statistic	68.537*** (df = 1; 524)
Note:	*p<0.1; **p<0.05; ***p<0.01

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable \bullet The estimated difference is very large. Women earn about \$2.51 less than men per hour, on average.

• Of course, there are some women who earn more than some men; this is a difference in averages.

• This simple regression allows us to do a simple **comparison of means test**. The null is

$$H_0: \mu_f = \mu_m$$

where μ_f is the population average wage for women and μ_m is the population average wage for men.

• Under MLR.1 to MLR.5, we can use the usual t statistic as approximately valid (or exactly under MLR.6):

$$t_{female} = -8.28$$

which is a very strong rejection of H_0 .

Analysis wi Qualitative Informatior (chapter 7)

Information A Single Dummy

Independent Variable

Describing Qualitative Information

A Single Dummy Independent Variable

- The estimate $\hat{\delta}_0 = -2.51$ does not control for factors that should affect wage, such as workforce experience and schooling.
- If women have, on average, less education, that could explain the difference in average wages.
- If we just control for education, the model written in expected value form is

 $E(wage|female, educ) = \beta_0 + \delta_0 female + \beta_1 educ$

where now δ_0 measures the gender difference when we hold fixed *exper*.

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable • Another way to write δ_0 :

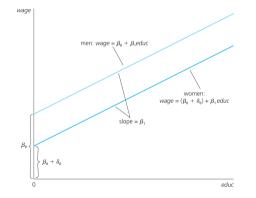
$$\delta_0 = E(wage|female, educ0) - E(wage|male, educ_0)$$

where $educer_0$ is any level of experience that is the same for the woman and man.

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

	Dependent variable:
	wage
female	
	(0.279)
educ	0.506***
	(0.050)
Constant	0.623
	(0.673)
Observations	526
R2	0.259
Adjusted R2	0.256
Residual Std. Error	3.186 (df = 523)
F Statistic	91.315*** (df = 2; 523)
Note:	*p<0.1; **p<0.05; ***p<0.01


Describing Qualitative Information

- \bullet Notice that there is still a difference of about 2.27 (now it's smaller, but still large and statistically significant).
- \bullet The model imposes a common slope on educ for men and women, β_1 , estimated to be .506 in this example.
- Recall, that the **intercept** is the only number that differ both categories (men and women).
- The estimated difference in average wages is the same at all levels of experience: \$2.27.

Multiple Regression Analysis wit Qualitative Information (chapter 7)

> Describing Qualitative Information

Multiple Regression Analysis with Qualitative Information (chapter 7)

Describing Qualitative Information

A Single Dummy Independent Variable • Notice that we can add other variables.

	Dependent variable:
	wage
female	-2.156***
	(0.270)
educ	0.603***
	(0.051)
exper	0.064***
	(0.010)
Constant	-1.734**
	(0.754)
Observations	526
R2	0.309
Adjusted R2	0.305
Residual Std. Error	3.078 (df = 522)
F Statistic	77.920*** (df = 3; 522)
	*p<0.1; **p<0.05; ***p<0.

• Note that if we also control for *exper*, the gap declines to \$2.16 (still large and statistically significant).

Describing Qualitative Information

A Single Dummy Independent Variable • The previous regressions use males as the **base group** (or **benchmark group** or **reference group**). The coefficient -2.16 on *female* tells us how women do compared with men.

- Of course, we get the same answer if we women as the base group, which means using a dummy variable for males rather than females.
- Because male = 1 female, the coefficient on the dummy changes sign but must remain the same magnitude.
- The intercept changes because now the base (or reference) group is females.

Describing Qualitative Information

- Putting *female* and *male* both in the equation is redundant. We have two groups so need only two intercepts.
 - This is the simplest example of the so-called **dummy variable trap**, which results from putting in too many dummy variables to represent the given number of groups (two in this case).
- Because an intercept is estimated for the base group, we need only one dummy variable that distinguishes the two groups.