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Population, Parameters, and Random Sampling

• Statistical inference involves learning (or inferring) some
thing about a population given the availability of a sample from
that population.
• Inferring mainly comprises two tasks:

1 estimation,
• point estimate
• interval estimate

2 hypothesis testing
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Population, Parameters, and Random Sampling

Population
Any well defined group of subjects, which would be individuals,
firms, cities, or many other possibilities.

• Examples:
• blood / blood test sample
• preparing a pot of soup / a spoon of soup to try it
• all working adults in US / a sample from it (it’s impractical

to collect data from the entire population)
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Sampling

• Let Y be a r.v. representing a population with p.d.f. f(y; θ)

• The p.d.f. of Y is assumed to be known, except for the value
of θ

Random Sample
If Y1, Y2, . . . , Yn are independent r.v. with a common probability
density function f(y; θ), then {Y1, Y2, . . . , Yn} is said to be a
random sample from f(y; θ) [or a random sample from the population
represented by f(y; θ)]

5 / 21



Mathematical
Statistics
Population

Sampling

Estimators and
Estimates

Unbiased estimators

Efficiency

Consistency

Law of Large
Numbers (LLN)

Central Limit
Theorem (CLT)

Sampling

• When {Y1, Y2, . . . , Yn} is a random sample from the density
f(y; θ), we also say that the Yi are independent, identically
distributed (or i.i.d.) r.v. from f(y; θ)

• Whether or not it is appropriate to assume the sample came
from a random sampling scheme requires knowledge about the
actual sampling process.
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Estimators and Estimates

• Estimator = Rule

Estimator
Given a population,
in which this population distribution depends of a parameter θ
you draw a random sample {Y1, Y2, . . . , Yn}.
Then an estimator of θ, say W , is a rule that assigns each
outcome of the sample a value of θ.

• Example (on board) sample average and sample variance.
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Estimators and Estimates

• Attention!

Parameter 6= Estimator 6= estimate

Estimator
Thus, an estimator is

W = h(Y1, Y2, . . . , Yn)
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Unbiasedness

Unbiased Estimator
An estimator W of θ, is an unbiased estimator if

E(W ) = θ

• Unbiasedness does not mean that the estimate we get with
any particular sample is equal to θ (or even close to θ).
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Unbiasedness

Bias
If W is biased estimator of θ, its bias is defined

Bias(W ) = E(W )− θ

• Some estimators can be shown to be unbiased quite generally.

• Example (on white board): sample average (Ȳ ).
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The Sampling Variance of Estimators

Figure: An unbiased estimator, W1, and an estimator with positive
bias, W2

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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Unbiasedness

• Even though being an unbiased estimator is a good quality for
an estimator, we should not try to reach it at any cost. There
are good estimators that are biased, and there are bad
estimators that are unbiased (example: W ≡ Y1)
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The Sampling Variance of Estimators

• Another criteria to evaluate estimators.

• We also would like to know how spread an estimator might be.

Sampling Variance: the variance of an estimator
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The Sampling Variance of Estimators

Figure: The sampling distributions of two unbiased estimators of θ

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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Efficiency

Efficiency (Relative)
If W1 and W2 are two unbiased estimators of θ, W1 is efficient
relative to W2 when

Var(W1) ≤ Var(W2)

for all θ, with strict inequality for at least one value of θ.

15 / 21



Mathematical
Statistics
Population

Sampling

Estimators and
Estimates

Unbiased estimators

Efficiency

Consistency

Law of Large
Numbers (LLN)

Central Limit
Theorem (CLT)

Efficiency

• One way to compare estimators that are not necessarily
unbiased is to compute the mean squared error (MSE) of the
estimators.

Mean Squared Error (MSE)

MSE(W ) = E
[
(W − θ)2]

= V ar(W ) + [Bias(W )]2
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Consistency

• We can rule out certain silly/bad estimators by studying the
asymptotic or large sample properties of estimators.

• It is related to the behavior of the sampling distribution when
the sample size n gets large.

• If an estimator is not consistent (i.e., inconsistent), then it
does not help us to learn about θ, even with with an unlimited
amount of data.

• Consistency: minimal requirement of an estimator.

• Unbiased estimators are not necessarily consistent.
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Consistency

Consistency
An estimator W of θ, is a consistent if

Wn
p−−−→ θ

Consistency
Let Wn be an estimator of θ based on a sample. Then, Wn is a
consistent estimator of θ if for every ε > 0,

P(|Wn − θ| > ε)→ 0, as n→∞
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Law of Large Numbers (LLN)

• Under general conditions, Ȳ will be near µ with very high
probability when n is large.

Law of Large Numbers (LLN)
Let Y1, Y2, . . . , Yn be i.i.d. random variables with mean µ.
Then,

Ȳn
p−−−→ µ

19 / 21



Mathematical
Statistics
Population

Sampling

Estimators and
Estimates

Unbiased estimators

Efficiency

Consistency

Law of Large
Numbers (LLN)

Central Limit
Theorem (CLT)

Law of Large Numbers (LLN)

• The LLN does NOT say that the estimator Ȳ will converge to
any type of distribution. (Don’t confuse with the Central Limit
Theorem).

• The LLN just says that the estimator will converge to the true
parameter, i.e, the sample average Ȳ will get closer and closer
to the true parameter µ as you increase the sample size.

20 / 21



Mathematical
Statistics
Population

Sampling

Estimators and
Estimates

Unbiased estimators

Efficiency

Consistency

Law of Large
Numbers (LLN)

Central Limit
Theorem (CLT)

Central Limit Theorem (CLT)

Central Limit Theorem (CLT)
Let Y1, Y2, . . . , Yn be i.i.d. with mean µ and variance σ2. Let,

Zn = Ȳn − µ
σ/
√
n

Then, Zn will converge to a Normal distribution with mean
µ = 0 and variance σ2 = 1, i.e., to a N(0, 1) as n→∞
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