Review - Mathematical Tools \& Probability

Department of Economics
 \title{
Caio Vigo
 \title{
Caio Vigo

 The University of Kansas
}

 The University of Kansas
}

Fall 2018
$K U$ Topics

Mathematical
Tools
Summation Operator
The Natural
Logarithm
Fundamentals
of Probability
Discrete \&
Continuous Random Variable

Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions
(1) Mathematical Tools

Summation Operator
The Natural Logarithm
(2) Fundamentals of Probability

Discrete \& Continuous Random Variable Features of Probability Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional Expectation
Distributions

KU Summation Operator

It is a shorthand for manipulating expressions involving sums.

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n}
$$

KU Summation Operator - Properties

Mathematical Tools
Summation Operator
The Natural
Logarithm
Fundamentals of Probability
Discrete \&
Continuous Random
Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

Property 1: For any constant c,

$$
\sum_{i=1}^{n} c=n c
$$

Property 2: For any constant c,

$$
\sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i}
$$

KU Summation Operator - Properties

Mathematical Tools
Summation Operator

The Natural

 LogarithmFundamentals of Probability Discrete \& Continuous Random Variable
Features of
Features of
Probability Distributions Expected Value Variance
Standard Deviation Covariance
Conditional
Expectation
Distributions

Property 3: If $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is a set of n pairs of numbers, and a and b are constants, then:

$$
\sum_{i=1}^{n}\left(a x_{i}+b y_{i}\right)=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} y_{i}
$$

Average

Given n numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, their average or (sample) mean is given by:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

KU Summation Operator - Properties

Mathematical Tools
Summation Operator
The Natural Logarithm

Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional Expectation
Distributions

Property 4: The sum of deviations from the average is always equal to 0, i.e.:

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0
$$

Property 5:

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)
$$

Property 6:

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)
$$

KU Summation Operator - Properties

Mathematical Tools
Summation Operator
The Natural
Logarithm
Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional Expectation
Distributions

Common Mistakes

Notice that the following does not hold:

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{x_{i}}{y_{i}} \neq \frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} y_{i}} \\
& \sum_{i=1}^{n} x_{i}^{2} \neq\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

KU The Natural Logarithm

- Most important nonlinear function in econometrics

Natural Logarithm

$$
y=\log (x)
$$

Other notations: $\ln (x), \log _{e}(x)$

KU The Natural Logarithm

Figure: Graph of $y=\log (x)$
The Natural Logarithm

Fundamentals of Probability
Discrete \&
Continuous Random
Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

KU The Exponential Function

Mathematical Tools
Summation Operator
The Natural
Logarithm
Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

$$
\begin{aligned}
& \exp (0)=1 \\
& \exp (1)=2.7183
\end{aligned}
$$

Figure: Graph of $y=\exp (x)$ (or $y=e^{x}$)

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

The Natural Logarithm

- Things to know about the Natural Logarithm $y=\log (x)$:
- is defined only for $x>0$
- the relationship between y and x displays diminishing marginal returns
- $\log (x)<0$, for $0<x<1$
- $\log (1)=0$
- $\log (x)>0$, for $x>1$
- Property 1: $\log \left(x_{1} x_{2}\right)=\log \left(x_{1}\right)+\log \left(x_{2}\right), x_{1}, x_{2}>0$
- Property 2: $\log \left(x_{1} / x_{2}\right)=\log \left(x_{1}\right)-\log \left(x_{2}\right), x_{1}, x_{2}>0$
- Property 3: $\log \left(x^{c}\right)=c \cdot \log (x)$, for any c
- Approximation: $\log (1+x) \approx x$, for $x \approx 0$

KU Topics

Mathematical Tools
Summation Operator

Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions
(1) Mathematical Tools

Summation Operator
The Natural Logarithm
(2) Fundamentals of Probability

Discrete \& Continuous Random Variable
Features of Probability Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional Expectation Distributions

- A random variable (r.v.) is one that takes on numerical values and has an outcome that is determined by an experiment.
- Precisely, an r.v. is a function of a sample space Ω to the Real numbers.
- Points ω in Ω are called sample outcomes, realizations, or elements.
- Subsets of Ω are called Events.

KU Random Variable

- Therefore, X is a r.v. if $X: \Omega \rightarrow \mathbb{R}$
- Random variables are always defined to take on numerical values, even when they describe qualitative events.

Example

- Flip a coin, where $\Omega=\{$ head, tail $\}$

KU Discrete Random Variable

Mathematical Tools

Probability Function

X is a discrete r.v. if takes on only a finite or countably infinite number of values.

We define the probability function or probability mass function for X by $f_{X}(x)=\mathbb{P}(X=x)$

Continuous Random Variable

Mathematical Tools
Summation Operator

Probability Density Function (pdf)

- A random variable X is continuous if there exists a function f_{X} such that $f_{X}(x) \geq 0$ for all $x, \int_{-\infty}^{\infty} f_{X}(x) d x=1$ and for every $a \leq b$,

$$
\mathbb{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
$$

The function f_{X} is called the probability density function (pdf). We have that

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

and $f_{X}(x)=F_{X}^{\prime}(x)$ at all points x at which F_{X} is differentiable.

KU Joint Distributions and Independence

- We are usually interested in the occurrence of events involving more than one r.v.

Example

- Conditional on a person being a student at KU, what is the probability that s/he attended at least one basketball game in Allen Fieldhouse?

Joint Distributions and Independence

Joint Probability Density Function

- Let X and Y be discrete r.v. Then, (X, Y) have a joint distribution, which is fully described by the joint probability density function of (X, Y) :

$$
f_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)
$$

where the right-hand side is the probability that $X=x$ and $Y=y$.

Independence

- Let X and Y be two discrete r.v.. Then, X and Y are independent (i.e. $A \Perp B$), if:

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

- Let X and Y be two continuous r.v.. Then, X and Y are independent (i.e. $A \Perp B$), if:

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

for all x and y, where f_{X} is the marginal (probability) density function of X and f_{Y} is the marginal (probability) density function of Y

KU Conditional Probability

Mathematical Tools

Summation Operator

- In econometrics, we are usually interested in how one random variable, call it Y , is related to one or more other variables.

Conditional Probability

- Let X and Y be two discrete r.v.. Then, the conditional probability that $Y=y$ given that $X=x$ is given by:

$$
\mathbb{P}(Y=y \mid X=x)=\frac{\mathbb{P}(Y=y, X=x)}{\mathbb{P}(X=x)}
$$

- Let X and Y be two continuous r.v.. Then, the conditional distribution of Y give X is given by:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

KU Conditional Probability \& Independence

- If $X \Perp Y$, then:

$$
f_{Y \mid X}(y \mid x)=f_{Y}(y)
$$

and,

$$
f_{X \mid Y}(x \mid y)=f_{X}(x)
$$

KU Features of Probability Distributions

- We are interest in three characteristics of a distribution of a r.v. They are:
(1) measures of central tendency
(2) measures of variability (or spread)
(3) measures of association between two r.v.

Expected Value

- The expected value of a r.v. X is given by:

$$
E(X)= \begin{cases}\sum_{x \in X} x f(x) & , \text { if } X \text { is discrete } \\ \int_{x \in X} x f(x) d(x) & \text {, if } X \text { is continuous }\end{cases}
$$

- Also called as first moment, or population mean, or simply mean
- Notation: the expected value of a r.v. X is denoted as $E(X)$, or μ_{X}

Properties of Expected Values

Mathematical Tools

Summation Operato The Natural Logarithm

Fundamentals of Probability

Property 1: For any constant $c, E(c)=c$

Property 2: For any constants a and b, $E(a X+b)=a E(X)+b$

Property 3: If $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ are constants and $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are r.vs. Then,

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
$$

- Example: (on board) If $X \sim \operatorname{Binomial}(n, \theta)$, where $X=Y_{1}, Y_{2}, \ldots, Y_{n}$ and $Y_{i} \sim \operatorname{Bernoulli}(\theta)$. Then $E(X)$.

Measure of Central Tendency (2): The Median

Median

The median is the value separating the higher half from the lower half of a data sample.

For a continuous r.v., the median is the value such that one-half of the area under the pdf is to the left of it, and one-half of the area is to the right of it.

For a discrete r.v., the median is obtained by ordering the possibles values and then selecting the value in the "middle".

Measure of Central Tendency (2): The Median

- $E(X)$ and $\operatorname{Med}(X)$ are both valid ways to measure the center of the distribution of X
- In general, $E(X) \neq \operatorname{Med}(X)$
- However, if X has a symmetric distribution about the value μ, then:

$$
\operatorname{Med}(X)=E(X)=\mu
$$

KU Measure of Variability (1): Variance

Variance

Features of
Let X be a r.v. with mean μ_{X}. Then, the variance of X is given by:

$$
\operatorname{Var}(X)=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

KU Properties of Variance

Mathematical Tools
Summation Operator The Natural Logarithm

Fundamentals of Probability
Discrete \&

- Let X be a r.v. with a well defined variance, then:

Property 1: $\operatorname{Var}(X)=E\left(X^{2}\right)-\mu_{X}^{2}$

Property 2: If a and b are constants, then:
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Property 3: If $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are independents r.vs. Then:

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Measure of Variability (2): Standard Deviation

Mathematical Tools

Standard Deviation

The standard deviation of a r.v. X is simply the positive square root of the Variance, i.e.

$$
\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}
$$

among the notations for the standard deviation we have: $\operatorname{sd}(X)$, σ_{X}, or simply σ.

Property: For any constant $c, \operatorname{sd}(c)=0$

Measure of Association (1): Covariance

Mathematical Tools
Summation Operato The Natural Logarithm

Fundamentals of Probability Discrete \& Continuous Random Variable

- Motivation: (on board)

Covariance

Let X and Y be two r.v. with mean μ_{X} and μ_{Y} respectively. Then, the covariance between X and Y is given by:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E(X Y)-E(X) E(Y) \\
& =E(X Y)-\mu_{X} \mu_{Y}
\end{aligned}
$$

Notation: $\sigma_{X, Y}$

- Covariance measures the amount of linear dependence between two r.v.
- If $\operatorname{Cov}(X, Y)>0$, then X and Y moves in the same direction.
$K U$ Properties of Covariance

Property 1: If X and Y are independents, then (\Rightarrow)
$\operatorname{Cov}(X, Y)=0$

Property 2: If $\operatorname{Cov}(X, Y)=0$, this does NOT imply (\nRightarrow) that X and Y are independents.

Measure of Association (2): Correlation

Mathematical Tools
Summation Operato

- Goal: A measure of association between r.v.s that is not impacted by changes in the unit of measurement (e.g., income in dollars or thousands of dollars)

Correlation

Let X and Y be two r.v., the correlation between X and Y is given by:

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{s d(X) s d(Y)}=\frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}
$$

Notation: $\rho_{X, Y}$

- $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$ always have the same sign (because denominator is always positive)
- $\operatorname{Corr}(X, Y)=0$ if, and only if $\operatorname{Cov}(X, Y)=0$

Properties of Correlation

Mathematical Tools

Summation Operato

Property:

$$
-1 \leq \operatorname{Corr}(X, Y) \leq 1
$$

- If $\operatorname{Cov}(X, Y)=0$, then $\operatorname{Corr}(X, Y)=0$. So, we say that X, Y are uncorrelated r.v.
- If $\operatorname{Corr}(X, Y)=1$, then X, Y have a perfect POSITIVE linear relationship.
- If $\operatorname{Corr}(X, Y)=-1$, then X, Y have a perfect NEGATIVE linear relationship.

Variance of Sums of Random Variables

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Property Variance of Sums of Random Variable: For any constants a and b,

- Example: (on board) [Let $X \sim \operatorname{Binomial}(n, \theta)$ and consider $X=Y_{1}+Y_{2}+\ldots+Y_{n}$, where each Y_{i} are independent Bernoulli (θ)]

KU Conditional Expectation

Goal:

- Want to explain one variable, called Y, in terms of another variable, X
- We can summarize this relationship between Y and X looking at the conditional expectation of Y given X, i.e., $E(Y \mid x)$
- $E(Y \mid x)$ is just a function of x, giving us the how the expected value of Y varies with x.

KU Conditional Expectation

Conditional Expectation

- If Y is a discrete r.v.

$$
E(Y \mid x)=\sum_{j=1}^{m} y_{j} f_{Y \mid X}\left(y_{j} \mid x\right)
$$

-If Y is a continuous r.v.

$$
E(Y \mid x)=\int_{y \in Y} y f_{Y \mid X}(y \mid x)
$$

Properties of Conditional Expectation

Mathematical Tools
Summation Operato

The Natural

Logarithm
Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Probability
Distributions
Expected Value Variance
Standard Deviation

$$
E[c(X) \mid X]=c(X)
$$

for any function $c(X)$

Property 2: For any functions $a(X)$ and $b(X)$

$$
E[a(X) Y+b(X) \mid X]=a(X) E(Y \mid X)+b(X)
$$

for any function $c(X)$

Property 3:

$$
E[E(Y \mid X)]=E(Y)
$$

Distributions - The Normal Distribution

- The most widely used distribution in Statistics and econometrics.

Normal distribution (Gaussian distribution)

If a r.v. $X \sim N\left(\mu, \sigma^{2}\right)$, then we say it has a standard normal distribution. The pdf of X is given by:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right),-\infty<x<\infty
$$

where $f(x)$ denotes the pdf of X.

Property: If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then $(X-\mu) / \sigma \sim \mathrm{N}(0,1)$

KU Distributions - The Normal Distribution

Figure: Normal Distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

Distributions - The Standard Normal Distribution

Standard Normal distribution

If a r.v. $Z \sim N(0,1)$, then we say it has a standard normal distribution. The pdf of Z is given by:

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right),-\infty<z<\infty
$$

where $\phi(z)$ denotes the pdf of Z.

Distributions - The Chi-Square Distribution

Mathematical Tools
Summation Operator

Fundamentals of Probability

Chi-Square distribution

Let $Z_{i}, i=1,2, \ldots, n$ be independent r.v., where each $Z_{i} \sim N(0,1)$. Then,

$$
X=\sum_{i=1}^{n} Z_{i}^{2}
$$

has a Chi-Square distribution with n degrees of freedom.

- Notation: $X \sim \chi_{n}^{2}$
- If $X \sim \chi_{n}^{2}$, then $X \geq 0$
- The Chi-square distribution is not symmetric about any point.

KU Distributions - The Chi-Square Distribution

Mathematical Tools
Summation Operator The Natural Logarithm

Fundamentals of Probability
Discrete \&
Continuous Random
Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

Figure: Chi-Square Distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

Distributions - The t Distribution

- The t-distribution plays a role in a number of widely used statistical analyses, including:
(1) Student's t-test for assessing the statistical significance of the difference between two sample means,
(2) construction of confidence intervals for the difference between two population means,
(3) and in linear regression analysis.

KU Distributions - The t Distribution

Mathematical Tools

Summation Operator

t distribution

Let $Z \sim N(0,1)$ and $X \sim \chi_{n}^{2}$, and assume Z and X are independents. Then, the random variable:

$$
t=\frac{Z}{\sqrt{X / n}}
$$

has a t distribution with n degrees of freedom.

- Notation: $t \sim t_{n}$

Distributions - The t Distribution

History:

- The distribution takes its name from William Sealy Gosset's 1908 paper in Biometrika under the pseudonym "Student".
- Gosset worked at the Guinness Brewery in Dublin, Ireland, and was interested in the problems of small samples. For example, the chemical properties of barley where sample sizes might be as few as 3.

KU Distributions - The t Distribution

Mathematical Tools
Summation Operator The Natural Logarithm

Fundamentals of Probability
Discrete \&
Continuous Random Variable
Features of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

Figure: The t distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

Distributions - The F Distribution

- Important for testing hypothesis in the context of multiple regression analysis

F distribution

Let $X_{1} \sim \chi_{k_{1}}^{2}$ and $X_{2} \sim \chi_{k_{2}}^{2}$, and assume X_{1} and X_{2} are independents. Then, the random variable:

$$
F=\frac{\left(X_{1} / k_{1}\right)}{\left(X_{2} / k_{2}\right)}
$$

has a F distribution with $\left(k_{1}, k_{2}\right)$ degrees of freedom.

- Notation: $F \sim F_{k_{1}, k_{2}}$
- k_{1} : numerator degrees of freedom
- k_{2} : denominator degrees of freedom

KU Distributions - The F Distribution

Mathematical Tools
Summation Operator The Natural Logarithm

Fundamentals of Probability
Discrete \&

Continuous Random

 VariableFeatures of
Probability
Distributions
Expected Value
Variance
Standard Deviation
Covariance
Conditional
Expectation
Distributions

Figure: The $F_{k_{1}, k_{2}}$ distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.

