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Summation Operator

It is a shorthand for manipulating expressions involving sums.

n∑
i=1

xi = x1 + x2 + . . .+ xn
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Summation Operator - Properties

Property 1: For any constant c,
n∑

i=1
c = nc

Property 2: For any constant c,
n∑

i=1
cxi = c

n∑
i=1

xi
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Summation Operator - Properties

Property 3: If {(x1, y1), (x2, y2), . . . , (xn, yn)} is a set of n
pairs of numbers, and a and b are constants, then:

n∑
i=1

(axi + byi) = a
n∑

i=1
xi + b

n∑
i=1

yi

Average
Given n numbers {x1, x2, . . . , xn}, their average or (sample)
mean is given by:

x̄ = 1
n

n∑
i=1

xi
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Summation Operator - Properties

Property 4: The sum of deviations from the average is always
equal to 0, i.e.:

n∑
i=1

(xi − x̄) = 0

Property 5:
n∑

i=1
(xi − x̄)2 =

n∑
i=1

xi(xi − x̄)

Property 6:∑n
i=1(xi − x̄)(yi − ȳ) =

∑n
i=1 xi(yi − ȳ) =

∑n
i=1 yi(xi − x̄)
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Summation Operator - Properties

Common Mistakes
Notice that the following does not hold:

n∑
i=1

xi

yi
6=
∑n

i=1 xi∑n
i=1 yi

n∑
i=1

x2
i 6=

(
n∑

i=1
xi

)2
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The Natural Logarithm

• Most important nonlinear function in econometrics

Natural Logarithm

y = log(x)

Other notations: ln(x), loge(x)
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The Natural Logarithm

Figure: Graph of y = log(x)

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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The Exponential Function

exp(0) = 1
exp(1) = 2.7183

Figure: Graph of y = exp(x) (or y = ex)

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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The Natural Logarithm

• Things to know about the Natural Logarithm y = log(x):
• is defined only for x > 0
• the relationship between y and x displays diminishing

marginal returns
• log(x) < 0, for 0 < x < 1
• log(1) = 0
• log(x) > 0, for x > 1
• Property 1: log(x1x2) = log(x1) + log(x2), x1, x2 > 0
• Property 2: log(x1/x2) = log(x1)− log(x2), x1, x2 > 0
• Property 3: log(xc) = c.log(x), for any c
• Approximation: log(1 + x) ≈ x, for x ≈ 0
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Random Variable

• A random variable (r.v.) is one that takes on numerical
values and has an outcome that is determined by an experiment.

• Precisely, an r.v. is a function of a sample space Ω to the
Real numbers.

• Points ω in Ω are called sample outcomes, realizations, or
elements.

• Subsets of Ω are called Events.

13 / 48



Mathematical
Tools

Summation Operator

The Natural
Logarithm

Fundamentals
of Probability
Discrete &
Continuous Random
Variable

Features of
Probability
Distributions

Expected Value

Variance

Standard Deviation

Covariance

Conditional
Expectation

Distributions

Random Variable

• Therefore, X is a r.v. if X : Ω→ R

• Random variables are always defined to take on numerical
values, even when they describe qualitative events.

Example
• Flip a coin, where Ω = {head, tail}
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Discrete Random Variable

Probability Function
X is a discrete r.v. if takes on only a finite or countably infinite
number of values.

We define the probability function or probability mass
function for X by fX(x) = P(X = x)

15 / 48



Mathematical
Tools

Summation Operator

The Natural
Logarithm

Fundamentals
of Probability
Discrete &
Continuous Random
Variable

Features of
Probability
Distributions

Expected Value

Variance

Standard Deviation

Covariance

Conditional
Expectation

Distributions

Continuous Random Variable

Probability Density Function (pdf)
• A random variable X is continuous if there exists a function
fX such that fX(x) ≥ 0 for all x,

∫∞
−∞ fX(x)dx = 1 and for

every a ≤ b,

P(a < X < b) =
∫ b

a
fX(x)dx

The function fX is called the probability density function
(pdf). We have that

FX(x) =
∫ x

−∞
fX(t)dt

and fX(x) = F ′X(x) at all points x at which FX is
differentiable.
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Joint Distributions and Independence

• We are usually interested in the occurrence of events involving
more than one r.v.

Example
• Conditional on a person being a student at KU, what is the
probability that s/he attended at least one basketball game in
Allen Fieldhouse?
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Joint Distributions and Independence

Joint Probability Density Function
• Let X and Y be discrete r.v. Then, (X,Y ) have a joint
distribution, which is fully described by the joint probability
density function of (X,Y ):

fX,Y (x, y) = P(X = x, Y = y)

where the right-hand side is the probability that X = x and
Y = y.
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Independence

• Let X and Y be two discrete r.v.. Then, X and Y are
independent (i.e. A⊥⊥B), if:

P(X = x, Y = y) = P(X = x)P(Y = y)

• Let X and Y be two continuous r.v.. Then, X and Y are
independent (i.e. A⊥⊥B), if:

fX,Y (x, y) = fX(x)fY (y)

for all x and y, where fX is the marginal (probability) density
function of X and fY is the marginal (probability) density
function of Y
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Conditional Probability

• In econometrics, we are usually interested in how one random
variable, call it Y, is related to one or more other variables.

Conditional Probability
• Let X and Y be two discrete r.v.. Then, the conditional
probability that Y = y given that X = x is given by:

P(Y = y|X = x) = P(Y = y,X = x)
P(X = x)

• Let X and Y be two continuous r.v.. Then, the conditional
distribution of Y give X is given by:

fY |X(y|x) = fX,Y (x, y)
fX(x)
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Conditional Probability & Independence

• If X⊥⊥Y , then:

fY |X(y|x) = fY (y)

and,

fX|Y (x|y) = fX(x)
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Features of Probability Distributions

• We are interest in three characteristics of a distribution of a
r.v. They are:

1 measures of central tendency
2 measures of variability (or spread)
3 measures of association between two r.v.
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Measure of Central Tendency (1): The Expected
Value

Expected Value
• The expected value of a r.v. X is given by:

E(X) =
{ ∑

x∈X xf(x) , if X is discrete∫
x∈X xf(x)d(x) , if X is continuous

• Also called as first moment, or population mean, or simply
mean

• Notation: the expected value of a r.v. X is denoted as
E(X), or µX
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Properties of Expected Values

Property 1: For any constant c, E(c) = c

Property 2: For any constants a and b,
E(aX + b) = aE(X) + b

Property 3: If {a1, a2, . . . , an} are constants and
{X1, X2, . . . , Xn} are r.vs. Then,

E

(
n∑

i=1
aiXi

)
=

n∑
i=1

aiE(Xi)

• Example: (on board) If X ∼ Binomial(n, θ), where
X = Y1, Y2, . . . , Yn and Yi ∼ Bernoulli(θ). Then E(X).
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Measure of Central Tendency (2): The Median

Median
The median is the value separating the higher half from the
lower half of a data sample.

For a continuous r.v., the median is the value such that
one-half of the area under the pdf is to the left of it, and
one-half of the area is to the right of it.

For a discrete r.v., the median is obtained by ordering the
possibles values and then selecting the value in the “middle”.
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Measure of Central Tendency (2): The Median

• E(X) and Med(X) are both valid ways to measure the center
of the distribution of X

• In general, E(X) 6= Med(X)

• However, if X has a symmetric distribution about the value
µ, then:

Med(X) = E(X) = µ
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Measure of Variability (1): Variance

Variance
Let X be a r.v. with mean µX . Then, the variance of X is
given by:

Var(X) = E
[
(X − µX)2

]

27 / 48



Mathematical
Tools

Summation Operator

The Natural
Logarithm

Fundamentals
of Probability
Discrete &
Continuous Random
Variable

Features of
Probability
Distributions

Expected Value

Variance

Standard Deviation

Covariance

Conditional
Expectation

Distributions

Properties of Variance

• Let X be a r.v. with a well defined variance, then:

Property 1: Var(X) = E(X2)− µ2
X

Property 2: If a and b are constants, then:
Var(aX + b) = a2Var(X)

Property 3: If {X1, X2, . . . , Xn} are independents r.vs. Then:

Var
(

n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi)
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Measure of Variability (2): Standard Deviation

Standard Deviation
The standard deviation of a r.v. X is simply the positive
square root of the Variance, i.e.

sd(X) =
√

Var(X)

among the notations for the standard deviation we have: sd(X),
σX , or simply σ.

Property: For any constant c, sd(c) = 0
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Measure of Association (1): Covariance

• Motivation: (on board)

Covariance
Let X and Y be two r.v. with mean µX and µY respectively.
Then, the covariance between X and Y is given by:

Cov(X,Y ) = E [(X − µX)(Y − µY )]
= E (XY )− E (X)E (Y )
= E (XY )− µXµY

Notation: σX,Y

• Covariance measures the amount of linear dependence
between two r.v.
• If Cov(X,Y ) > 0, then X and Y moves in the same direction.
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Properties of Covariance

Property 1: If X and Y are independents, then (⇒)
Cov(X,Y ) = 0

Property 2: If Cov(X,Y ) = 0, this does NOT imply (;) that
X and Y are independents.
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Measure of Association (2): Correlation

• Goal: A measure of association between r.v.s that is not
impacted by changes in the unit of measurement (e.g., income
in dollars or thousands of dollars)

Correlation
Let X and Y be two r.v., the correlation between X and Y is
given by:

Corr(X,Y ) = Cov(X,Y )
sd(X)sd(Y ) = σX,Y

σXσY

Notation: ρX,Y

• Cov(X,Y ) and Corr(X,Y ) always have the same sign
(because denominator is always positive)
• Corr(X,Y ) = 0 if, and only if Cov(X,Y ) = 0
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Properties of Correlation

Property:
−1 ≤ Corr(X,Y ) ≤ 1

• If Cov(X,Y ) = 0, then Corr(X,Y ) = 0. So, we say that X,Y
are uncorrelated r.v.

• If Corr(X,Y ) = 1, then X,Y have a perfect POSITIVE
linear relationship.

• If Corr(X,Y ) = −1, then X,Y have a perfect NEGATIVE
linear relationship.
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Variance of Sums of Random Variables

Property Variance of Sums of Random Variable: For any
constants a and b,

Var (aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

• Example: (on board) [Let X ∼ Binomial(n, θ) and consider
X = Y1 + Y2 + . . .+ Yn, where each Yi are independent
Bernoulli(θ)]
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Conditional Expectation

Goal:

• Want to explain one variable, called Y , in terms of another
variable, X

• We can summarize this relationship between Y and X looking
at the conditional expectation of Y given X, i.e., E(Y |x)

• E(Y |x) is just a function of x, giving us the how the expected
value of Y varies with x.
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Conditional Expectation

Conditional Expectation
•If Y is a discrete r.v.

E(Y |x) =
m∑

j=1
yjfY |X(yj |x)

•If Y is a continuous r.v.

E(Y |x) =
∫

y∈Y
yfY |X(y|x)
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Properties of Conditional Expectation

Property 1:
E[c(X)|X] = c(X)

for any function c(X)

Property 2: For any functions a(X) and b(X)

E[a(X)Y + b(X)|X] = a(X)E(Y |X) + b(X)

for any function c(X)

Property 3:
E[E(Y |X)] = E(Y )
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Distributions - The Normal Distribution

• The most widely used distribution in Statistics and
econometrics.

Normal distribution (Gaussian distribution)
If a r.v. X ∼ N(µ, σ2), then we say it has a standard normal
distribution. The pdf of X is given by:

f(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,−∞ < x <∞

where f(x) denotes the pdf of X.

Property: If X ∼ N(µ, σ2), then (X − µ)/σ ∼ N(0, 1)
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Distributions - The Normal Distribution

Figure: Normal Distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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Distributions - The Standard Normal Distribution

Standard Normal distribution
If a r.v. Z ∼ N(0, 1), then we say it has a standard normal
distribution. The pdf of Z is given by:

φ(z) = 1√
2π
exp(−z2/2),−∞ < z <∞

where φ(z) denotes the pdf of Z.
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Distributions - The Chi-Square Distribution

Chi-Square distribution
Let Zi, i = 1, 2, . . . , n be independent r.v., where each
Zi ∼ N(0, 1). Then,

X =
n∑

i=1
Z2

i

has a Chi-Square distribution with n degrees of freedom.
• Notation: X ∼ χ2

n

• If X ∼ χ2
n, then X ≥ 0

• The Chi-square distribution is not symmetric about any point.
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Distributions - The Chi-Square Distribution

Figure: Chi-Square Distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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Distributions - The t Distribution

• The t-distribution plays a role in a number of widely used
statistical analyses, including:

1 Student’s t-test for assessing the statistical significance of
the difference between two sample means,

2 construction of confidence intervals for the difference
between two population means,

3 and in linear regression analysis.
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Distributions - The t Distribution

t distribution
Let Z ∼ N(0, 1) and X ∼ χ2

n, and assume Z and X are
independents. Then, the random variable:

t = Z√
X/n

has a t distribution with n degrees of freedom.
• Notation: t ∼ tn
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Distributions - The t Distribution

History:
• The distribution takes its name

from William Sealy Gosset’s 1908
paper in Biometrika under the
pseudonym ”Student”.
• Gosset worked at the Guinness

Brewery in Dublin, Ireland, and
was interested in the problems of
small samples. For example, the
chemical properties of barley
where sample sizes might be as
few as 3.
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Distributions - The t Distribution

Figure: The t distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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Distributions - The F Distribution

• Important for testing hypothesis in the context of multiple
regression analysis

F distribution
Let X1 ∼ χ2

k1
and X2 ∼ χ2

k2
, and assume X1 and X2 are

independents. Then, the random variable:

F = (X1/k1)
(X2/k2)

has a F distribution with (k1, k2) degrees of freedom.
• Notation: F ∼ Fk1,k2

• k1 : numerator degrees of freedom
• k2 : denominator degrees of freedom
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Distributions - The F Distribution

Figure: The Fk1,k2 distribution

Source: Wooldridge, Jeffrey M. (2015). Introductory Econometrics: A Modern Approach.
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